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Introduction

This module serves as an introduction to the concepts of Probability and
Statistics required for Data Science. Both the theoretical concepts and
practical examples will be explored throughout the module.
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1. Basic Concepts in Statistics

This section will follow closely Chapter 3 of Essential Math for Data Science
by T.Nield (see the Reading List on Canvas).

In simple terms, statistics is the collection, analysis and interpretation of data.
Data can be qualitative (e.g. hair colour, make of car, etc.) or quantitative
(numerical). Data can also be discrete or continuous, where discrete data
is distinct, e.g. hair colour and continuous data takes a range of values,
e.g. height.

Probability often plays a large role in statistics, as we use data to estimate
how likely an event is to happen.

Statistics is the heart of many data-driven innovations. Machine learning
in itself is a statistical tool, searching for possible hypotheses to correlate
relationships between different variables in data.

We can easily get caught up in what the data says that we forget to ask where
the data comes from. These concerns become all the more important as big
data, data mining, and machine learning all accelerate the automation of
statistical algorithms. Therefore, it is important to have a solid foundation
in statistics and hypothesis testing so you do not treat these automations as
black boxes.
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Definition 1.1

Descriptive statistics involves using tools, for example calculating the
mean, median, mode, and using charts, to describe data.

Note that we will recap/cover these concepts shortly.

Definition 1.2

Statistical inference tries to uncover attributes about a larger popula-
tion, often based on a sample.

Descriptive statistics is the most commonly understood part of statistics and
we use it to summarise data. Inferential statistics tries to uncover attributes
about a larger population, often based on a sample. It is often misunderstood
and less intuitive than descriptive statistics. Often we are interested in
studying a group that is too large to observe, for example the average height
of adults in the UK, and we have to resort to using only a few members of
that group to infer conclusions about them. As you can guess, this is not
easy to get right. After all, we are trying to represent a population with a
sample that may not be representative.

We next consider populations, samples and bias.

Definition 1.3

A population is the collection of objects or people under discussion,
which can be both finite and infinite.

Examples of populations could be “all Swansea University students”, “all
adults in the UK”, or “all Golden Retrievers in Scotland”.

If we are going to infer attributes about a population based on a sample,
it’s important the sample be as random as possible so we do not skew our
conclusions, i.e. we want to avoid bias.

Definition 1.4

A sample is any subset of a population.

In practice it is not often possible/practical to gain information about a whole
population therefore we often use a sample of the population instead. We
work with samples because we want to make inferences about the population,
but clearly there is a risk in coming to a false conclusion by making an
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inference about the whole population using a sample. Therefore there is a
need for statistics tests to ensure that similar results would be obtained if a
study were to be repeated and that the results are not just due to sampling
variability.

Remark 1.5

It is important to note that populations can be theoretical and not
physically tangible. In these cases our population acts more like a
sample from something abstract. For example, let us say that we are
interested in flights that depart between 2p.m. and 3p.m. at an airport,
but we lack enough flights at that time to reliably predict how often these
flights are late. Therefore, we may treat this population as a sample
instead from an underlying population of all theoretical flights taking
off between 2p.m. and 3p.m.
Problems like this are why many researchers resort to simulations to
generate data. Simulations can be useful but rarely are accurate, as
simulations capture only so many variables and have assumptions built
in.

Intuitively, we know that bias is when something is not evaluated in an
objective way, however in statistics we have certain types of bias, see below.

Definition 1.6

A. Confirmation bias is gathering only data that supports your belief,
which can even be done unknowingly. An example of this is following
only social media accounts you politically agree with, reinforcing your
beliefs rather than challenging them.
B. Self-selection bias is when certain types of subjects are more likely
to include themselves in the experiment. For example, this could be
walking onto a flight and polling the customers if they like the airline
over other airlines, and using that to rank customer satisfaction among
all airlines.
C. Survival bias captures only living and survived subjects, while the
deceased ones are never accounted for. For example, many manage-
ment consulting companies and book publishers like to identify traits of
successful companies/individuals and use them as predictors for future
successes. These works are pure survival bias, since these works do not
account for companies/individuals that failed in obscurity, and these
“success” qualities may be commonplace with failed ones as well.
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We now look at some descriptive statistics in more detail, beginning with
measures of location.

Definition 1.7

The sample mean, denoted by ̄𝑥, of a sample of observations
𝑥1, 𝑥2, … , 𝑥𝑛 is given by

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛
𝑛

.

Analogously, the population mean, denoted by 𝜇, of a population of
observations 𝑥1, … , 𝑥𝑁 is given by

𝜇 = 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑁
𝑁

.

Example 1.8. Eight people from the general UK population were polled on
the number of pets they own. The results are shown below:

1, 3, 2, 5, 7, 0, 2, 3.

These are the 𝑥1, … , 𝑥8 terms as in the previous definition of the sample
mean.Therefore, the sample mean is then given by:

̄𝑥 = 1 + 3 + 2 + 5 + 7 + 0 + 2 + 3
8

= 23
8

= 2.875.

Example 1.9. We now modify the situation of the previous example to
where the population is now students studying a certain Mathematics module
at Swansea University. The values for the whole population are as follows:

2, 1, 3, 4, 2, 6, 4, 0, 1, 1, 3, 3, 4, 1, 1, 5, 5, 2, 1, 3.

The population mean is then given by:

𝜇 = 2 + 1 + 3 + 4 + 2 + 6 + 4 + 0 + 1 + 1 + 3 + 3 + 4 + 1 + 1 + 5 + 5 + 2 + 1 + 3
20

= 52
20

= 2.6.
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Definition 1.10

We define the weighted mean by

𝑥1 ⋅ 𝑤1 + 𝑥2 ⋅ 𝑤2 + ⋯ + 𝑥𝑛 ⋅ 𝑤𝑛
𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛

,

where 𝑥1, … , 𝑥𝑛 denote the observations and 𝑤1, … , 𝑤𝑛 are the corre-
sponding weights.

Example 1.11. Let us consider a module with three coursework components
worth 20% each and a final exam that is worth 40%. A student scores
90, 80, 63 and 87 respectively in these components. The weights are therefore
0.2, 0.2, 0.2 and 0.4 respectively and the weighted average is given by,

0.2 ⋅ 90 + 0.2 ⋅ 80 + 0.2 ⋅ 63 + 0.4 ⋅ 87
0.2 + 0.2 + 0.2 + 0.4

= 81.4.

Definition 1.12

The median is the middle value of ranked data if 𝑛 is odd and it is the
mean of the two middle values if 𝑛 is even, i.e.

1
2𝑛th + (1

2𝑛 + 1)th

2
.

Example 1.13. Calculate the median of the values: 5,0,1,9,7,10,14. Firstly
we rank these values to obtain:

0, 1, 5, 7, 9, 10, 14.

Since 𝑛 is odd (i.e. 7) we take the middle value of 7 to be the median. If we
now add one value of 20 to this example, then the modified ranked data is
given by:

0, 1, 5, 7, 9, 10, 14, 20.
Now we have an even number of values (i.e. 8) and hence the median is given
by 7+9

2 = 8.

Remark 1.14

There is a concept of quantiles in descriptive statistics. The concept
of quantiles is essentially the same as a median, just cutting the data
in other places besides the middle. The median is actually the 50%
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quantile, or the value where 50% of ordered values are behind it. Then
there are the 25%, 50%, and 75% quantiles, which are known as quartiles
because they cut data in 25% increments.

Definition 1.15

The mode is the most frequently occurring set of values. It primarily
becomes useful when your data is repetitive and you want to find which
values occur the most frequently.

Example 1.16. Find the mode of the values 20, 21, 19, 20, 22, 19, 20. The
most common value is 20, hence 20 is the mode of this dataset.

The mode is not necessarily unique, see the example below for an illustration.

Example 1.17. If we return to Example 1.8, we find that the mode for the
number of pets is 2 and 3.

We now consider measures of variation of data. This gives us a sense of
how “spread out” the data is. It is important to note that there are some
calculation differences for the sample versus the population.

Definition 1.18

A. For a population of data values 𝑥1, … , 𝑥𝑁, the (population) variance
is given by,

𝜎2 =
∑𝑁

𝑖=1(𝑥𝑖 − 𝜇)2

𝑁
,

where 𝜇 is the mean of the population. Furthermore, the (population)
standard deviation is the square root of the variance, i.e.

𝜎 = √∑𝑁
𝑖=1(𝑥𝑖 − 𝜇)2

𝑁
.

B. For a sample of data values 𝑥1, … , 𝑥𝑛, the sample variance is given
by,

𝑠2 =
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2

𝑛 − 1
,

where ̄𝑥 is the sample mean. Similarly, the sample standard deviation
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is the square root of the sample variance, i.e.

𝑠 = √∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

𝑛 − 1
.

Remark 1.19

Note that for the sample variance (and hence the sample standard
deviation) we divide by 𝑛 − 1 rather than the total number of items.
We do this to decrease any bias in a sample and not underestimate the
variance of the population based on our sample. By counting values
short of one item in our divisor, we increase the variance and therefore
capture greater uncertainty in our sample.

Example 1.20. In this example we are interested in studying the number
of pets owned by members of staff in a certain shop (note that this is our
population, not a sample). The data are as follows:

0, 14, 5, 9, 7, 10, 1.

The mean of this sample is 6.571, hence the variance is given by

𝜎2 =
∑𝑁

𝑖=1(𝑥𝑖 − 𝜇)2

𝑁
= (0 − 6.571)2 + (14 − 6.571)2 + (5 − 6.571)2 + (9 − 6.571)2 + (7 − 6.571)2 + (10 − 6.571)2 + (1 − 6.571)2

7
= 21.29.

Therefore the standard deviation is given by 𝜎 =
√

21.38 = 4.62. (All to
2dp.)

Example 1.21. We now modify the previous example to the situation where
the data provided are a sample of a larger population. We now calculate the
sample variance and standard deviation:

𝑠2 =
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2

𝑛 − 1
= (0 − 6.571)2 + (14 − 6.571)2 + (5 − 6.571)2 + (9 − 6.571)2 + (7 − 6.571)2 + (10 − 6.571)2 + (1 − 6.571)2

6
= 24.95.
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Therefore the sample standard deviation is given by 𝜎 =
√

24.95 = 4.99. (All
to 2dp.)

Notice that the sample variance and standard deviation have increased com-
pared to the population case. This is correct as a sample could be biased and
imperfect representing the population. Therefore, we increase the variance
(and thus the standard deviation) to increase our estimate of how spread out
the values are. A larger variance/standard deviation shows less confidence
with a larger range.

Definition 1.22

Measures of characteristics of a sample are called statistics. (Not to
be confused with the subject area of statistics described above.) The
corresponding characteristics in the population are called parameters.

We work with samples because we want to make inferences about the popula-
tion, but clearly there is a risk in coming to a false conclusion by making an
inference about the whole population using a sample. Therefore there is a
need for statistics tests to ensure that similar results would be obtained if a
study were to be repeated and that the results are not just due to sampling
variability.

The final topic of this chapter discusses some basic data visualisation tech-
niques - in particular, we will consider histograms, box plots and scatter
plots.

Definition 1.23

A histogram is a graphical display of continuous data using bars. A
bar chart provides a graphical display of categorical data.

Note that there are no gaps between the bars of histograms and the bars
can be of varying widths, i.e. they may have different sized intervals or ‘bins’.
Histograms can be used to help determine the distribution of the data.

Example 1.24. In this example we consider the weight of Golden Retrievers.
See below for examples of histograms for this data.

This histogram does not reveal any meaningful shape to our data. The reason
is because our bins are too small.
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Figure 1.1

As you can see, if we get the bin sizes just right (in this case, each has a range
of three pounds), we start to get a meaningful bell shape to our data.

Definition 1.25

A box plot or a box-and-whisker plot is a graphical technique to display
data using quartiles. The box itself indicates the interquartile range,
i.e. the 25% quartile to the 75% quartile. The median is indicated by
a line within the box. The end of the lower (or left) whisker indicates
the minimum and the top of the upper (or right) whisker denotes the
maximum. Outliers are usually indicated by points.

Box plots are useful to visualise the distribution of data, in particular to
check for symmetry.

Example 1.26. Let us use the data in Example 1.13 to produce the following
box plot.
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Figure 1.2

Definition 1.27

We obtain bivariate data when we measure two variables on each
member of the population or sample.

Scatter plots can be used to plot such data, these plots can also help to
visualise a relationship between the variables. One variable is plotted on the
horizontal axis and the other on the vertical axis.

Example 1.28. Let us consider the data below which records exam marks
for students and the corresponding time (in hours) the students spent revising
for the exam.
Revision Hours 18 2 13 14 6 15 16 9 10 15

Mark 82 20 42 68 41 95 72 48 60 62

This can be represented by the following scatter plot:
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2. Basic Concepts and Rules of Probability

2.1 Introduction to Probability Theory
Probability Theory is a branch of mathematics that deals with uncertainty
and randomness. It provides a framework for quantifying and analyzing
uncertainty in stochastic experiments.

Probability theory plays a crucial role in data science, where we often deal
with uncertain data and make predictions based on probabilities.

An experiment or trial is any procedure that can be infinitely repeated and
has a well-defined set of possible outcomes.

An outcome (denoted by 𝜔) is a particular result of an experiment.

A sample space (denoted by Ω) is the set of all possible outcomes of an
experiment (i.e. 𝜔 ∈ Ω).

An event is a subset of the sample space (e.g. 𝐴 ⊂ Ω), representing a specific
outcome or a collection of outcomes.

Probability (denoted by ℙ) is a measure of the likelihood of an event
occurring. It assigns a number between 0 and 1 to an event, where 0 indicates
extreme unlikelihood, and 1 indicates certainty that the event will occur. In
particular,

0 ≤ ℙ(𝐴) ≤ ℙ(Ω) = 1.

Example 2.1. When we throw a coin ones, the possible outcomes are 𝐻, 𝑇
(stand for ‘head’ and ‘tail’).

16
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Therefore, Ω = {𝐻, 𝑇 }.

There are 4 events one can consider: {𝐻}, {𝑇 }, {𝐻, 𝑇 },∅.

Example 2.2. Consider rolling a fair six-sided dice.

The possible outcomes then are 1, 2, 3, 4, 5, 6.

Therefore, Ω = {1, 2, 3, 4, 5, 6}.

Consider the event 𝐴 of getting an even number: 𝐴 = {2, 4, 6}.

Consider the event 𝐵 of getting a prime number: 𝐵 = {2, 3, 5}.

Then ℙ(𝐴) = ℙ(𝐵) = 1
2 (think why).

Remember

The event ∅ (‘empty set’) describes an impossible event (e.g. we throw
a coin or a dice with no outcome). Then

ℙ(∅) = 0.

Remark. In the experiment from Example 2.2, the following 26 = 64 events
can be considered

∅, {1}, {2}, … , {6},
{1, 2}, {1, 3}, … , {5, 6},
{1, 2, 3}, … , {4, 5, 6},

…
{1, 2, … , 6}.

Remember

If the sample space Ω contains 𝑛 elements (outcomes), then the set of
all events (that is the set of all subsets of Ω) is denoted by 2Ω, and it
contains 2𝑛 events.

Memorize

We start our course with the discrete case, when Ω is a finite set. To
calculate the probability ℙ(𝐴) of an event 𝐴 ⊂ Ω, we use the following
formula:

ℙ(𝐴) = number of outcomes that make 𝐴
number of all outcomes

= ♯(𝐴)
♯(Ω)

17
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A

Figure 2.1: Visual representation of ℙ(𝐴) = oval
rectangle

Example 2.3. Consider rolling twice a fair six-sided dice. Then outcomes
are 𝜔 = (𝑎, 𝑏) where 𝑎, 𝑏 ∈ {1, 2, 3, 4, 5, 6}, i.e.

Ω = {(𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ {1, 2, 3, 4, 5, 6}}.

Then ♯(Ω) = 6 ⋅ 6 = 36. Let 𝐴 be the event of having the sum of the numbers
in two rollings bigger than 10. Then

𝐴 = {(5, 6), (6, 5), (6, 6)}.

Therefore,
ℙ(𝐴) = 3

36
= 1

12
.

Example 2.4. Consider drawing a card from a standard deck of 52 playing
cards. The sample space Ω is the set of all 52 pairs of the form 𝑣𝑆, where
𝑣 ∈ {𝐴, 2, 3, 4, … , 10, 𝐽, 𝑄, 𝐾} is the value of a card (here 𝐽 represents a Jack,
𝑄 represents a Queen, 𝐾 represents a King, and 𝐴 represents an Ace), and
𝑆 ∈ {♣, ♢, ♠, ♡} is the card suit (e.g. 2♢, … , 𝐴♢ are all diamonds). Let 𝐵
be the event of drawing a red face card. Then

𝐵 = {𝐽♢, 𝑄♢, 𝐾♢, 𝐽♡, 𝑄♡, 𝐾♡},

and hence,
ℙ(𝐵) = 6

52
= 3

26
.

2.2 Rules of Probability
Definition 2.5. The sum of events 𝐴 and 𝐵 is the event 𝐴+𝐵 (also denoted
𝐴 ∪ 𝐵 or 𝐴 ∨ 𝐵) which occurs iff either 𝐴 occurs or 𝐵 occurs or they both
occur.

18
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A B

A + B

Figure 2.2: Visual representation of 𝐴 + 𝐵

Definition 2.6. The product of events 𝐴 and 𝐵 is the event 𝐴𝐵 (also
denoted 𝐴 ∩ 𝐵 or 𝐴 ∧ 𝐵) which occurs iff both 𝐴 and 𝐵 occur.

A BAB

Figure 2.3: Visual representation of 𝐴𝐵

Remember

• 𝐴 + 𝐵 occurs under more outcomes than either of 𝐴 or 𝐵 alone:

ℙ(𝐴 + 𝐵) ≥ ℙ(𝐴), ℙ(𝐴 + 𝐵) ≥ ℙ(𝐵).

• 𝐴𝐵 occurs under less outcomes than each of 𝐴 or 𝐵 alone:

ℙ(𝐴𝐵) ≤ ℙ(𝐴), ℙ(𝐴𝐵) ≤ ℙ(𝐵).

Memorize

The addition rule states that

ℙ(𝐴 + 𝐵) = ℙ(𝐴) + ℙ(𝐵) − ℙ(𝐴𝐵).

19



MA-M27 Probability and Statistics for Data Science Lecture Notes

It can be easily interpretted using the visual representations of ℙ(𝐴 + 𝐵)
and ℙ(𝐴𝐵).

Example 2.7. There is a standard deck of 52 playing cards. Find the
probability of drawing either a red card or a face card (king, queen, or jack)
from the deck in a single draw.

Solution: Let 𝐴 be the event of drawing a red card, and 𝐵 be the event of
drawing a face card. Overall, there are 26 red cards, 12 face cards, and 6 red
face cards. Therefore,

ℙ(𝐴 + 𝐵) = 26
52

+ 12
52

− 6
52

= 32
52

= 8
13

.

LIGHTBULB Remember

Events 𝐴 and 𝐵 are called mutually exclusive events if only one of
them may happen, i.e. if 𝐴𝐵 = ∅. In this case ℙ(𝐴𝐵) = 0, and the
addition rule takes the form

ℙ(𝐴 + 𝐵) = ℙ(𝐴) + ℙ(𝐵).

Definition 2.8. The complement to an event 𝐴 is the event 𝐴𝑐 which
occurs iff 𝐴 does not occur. Since ℙ(Ω) = 1, one has

ℙ(𝐴𝑐) = 1 − ℙ(𝐴).

A

Ac

Figure 2.4: Visual representation of 𝐴𝑐

Example 2.9. A fair six-sided dice is rolling three times. Find the probability
that the total score (the sum of three trials) will be at least 4 (event 𝐴).

20
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Solution: The sample space Ω consists of all triples (𝑎, 𝑏, 𝑐) with 𝑎, 𝑏, 𝑐 ∈
{1, 2, … , 6}. Thus, ♯(Ω) = 63 = 216. The total score is 4 or more in all cases
but the case (1, 1, 1). Therefore, the answer is:

ℙ(𝐴) = 1 − ℙ(𝐴𝑐) = 1 − 1
216

= 215
216

.

Definition 2.10. Conditional probability ℙ(𝐴 ∣ 𝐵) is the probability of
an event 𝐴 occurring given that event 𝐵 has already occurred, so we assume
that ℙ(𝐵) ≠ 0. The formula is

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴𝐵)
ℙ(𝐵)

.

Memorize

The multiplication rule follows immediately from the formula for the
conditional probability:

ℙ(𝐴𝐵) = ℙ(𝐵) ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴) ℙ(𝐵 ∣ 𝐴).

Remember

The multiplication rule can be generalised for the product of several
events, e.g.

ℙ(𝐴𝐵𝐶) = ℙ(𝐴) ℙ(𝐵 ∣ 𝐴) ℙ(𝐶 ∣ 𝐴𝐵).

Example 2.11. In a bag of 20 marbles, 8 are red, and 12 are green. Three
marbles are drawn from the bag without replacement. What is the probability
that they all are of the same color?

Solution: we need to find the probability that either 𝐴 = (𝑟, 𝑟, 𝑟) or 𝐵 =
(𝑔, 𝑔, 𝑔) holds. Note that 𝐴 and 𝐵 are mutually exclusive events. By the
multiplication rule,

ℙ(𝐴) = 8
20

⋅ 7
19

⋅ 6
18

,

and
ℙ(𝐵) = 12

20
⋅ 11

19
⋅ 10

18
.

Therefore, by the addition rule (for mutually exclusive events),

ℙ(𝐴 + 𝐵) = ℙ(𝐴) + ℙ(𝐵) = 8 ⋅ 7 ⋅ 6
20 ⋅ 19 ⋅ 18

+ 12 ⋅ 11 ⋅ 10
20 ⋅ 19 ⋅ 18

= 1656
6840

= 23
95

.
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Definition 2.12. An event 𝐴 is said to be independent on an event 𝐵 if
the occurrence of 𝐵 does not affect the probability of occurrence of 𝐴. In
other words, 𝐴 is independent on 𝐵 iff

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴).

Example 2.13. A fair coin is tossing twice. Let 𝐴: a head appeared in the
first tossing, and 𝐵: a tail appeared in the second tossing. Then 𝐴 and 𝐵
are independent. 𝐴 = {𝐻𝐻, 𝐻𝑇 }, 𝐵 = {𝐻𝑇 , 𝑇 𝑇 }, and hence, 𝐴𝐵 = {𝐻𝑇 }.
Then ℙ(𝐴𝐵) = 1

4 = 1
2 ⋅ 1

2 = ℙ(𝐴)ℙ(𝐵).

LIGHTBULB Remember

If 𝐴 is independent on 𝐵 then 𝐵 is independent on 𝐴, and

ℙ(𝐴𝐵) = ℙ(𝐴) ℙ(𝐵).

Remark. If three (or more) events are pairwise independent: 𝐴 and 𝐵 are
independent, the same for 𝐵 and 𝐶, and for 𝐴 and 𝐶, it still may be that they
are not independent in total, and then, in general, ℙ(𝐴𝐵𝐶) ≠ ℙ(𝐴)ℙ(𝐵)ℙ(𝐶)
(see the multiplication rule).

A

B1 B2 Bn

AB
1

AB
2

AB
n

Figure 2.5: Note that 𝐴 = 𝐴𝐵1 + … + 𝐴𝐵𝑛

Memorize

Let 𝐵1, … , 𝐵𝑛 be pairwise exclusive events (i.e. 𝐵𝑖𝐵𝑗 = ∅ for all 𝑖 ≠ 𝑗)
such that 𝐵1 + 𝐵2 + … + 𝐵𝑛 = Ω with ℙ(𝐵𝑖) ≠ 0 (it is said then that
𝐵1, … , 𝐵𝑛 form a partition of Ω). Then the law of total probability
holds:

ℙ(𝐴) = ℙ(𝐴 ∣ 𝐵1) ℙ(𝐵1) + … + ℙ(𝐴 ∣ 𝐵𝑛) ℙ(𝐵𝑛).
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Remember

There is also a modification of the law of total probability for conditional
probabilioties. If 𝐵1, … , 𝐵𝑛 are as above and ℙ(𝐶) ≠ 0, then

ℙ(𝐴 ∣ 𝐶) = ℙ(𝐴 ∣ 𝐵1𝐶)ℙ(𝐵1 ∣ 𝐶) + … + ℙ(𝐴 ∣ 𝐵𝑛𝐶)ℙ(𝐵𝑛 ∣ 𝐶).

From Definition 2.10, we have that

ℙ(𝐵)ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴𝐵) = ℙ(𝐵𝐴) = ℙ(𝐴)ℙ(𝐵 ∣ 𝐴).

This implies the following important statement.

Memorize

Let ℙ(𝐴) ≠ 0 and ℙ(𝐵) ≠ 0. Then Bayes’ rule (a.k.a. Bayes’ formula
or Bayes’ theorem) holds:

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴)ℙ(𝐵 ∣ 𝐴)
ℙ(𝐵)

.

It describe the a posteriori probability of the event 𝐴, after an experiment
with the known outcome 𝐵, using the a priori information about the
outcome 𝐵.

Remember

If 𝐴1, … , 𝐴𝑛 form a partition of Ω (i.e. 𝐴1 +…+𝐴𝑛 = Ω and 𝐴𝑖𝐴𝑗 = ∅
for 𝑖 ≠ 𝑗) with ℙ(𝐴𝑗) ≠ 0, then we can rewrite Bayes’ rule as follows,
for ℙ(𝐵) ≠ 0:

ℙ(𝐴𝑖 ∣ 𝐵) = ℙ(𝐴𝑖)ℙ(𝐵 ∣ 𝐴𝑖)
𝑛

∑
𝑗=1

ℙ(𝐵 ∣ 𝐴𝑗)ℙ(𝐴𝑗)
.

Example 2.14. A patient has taken a test for a rare disease. The prevalence
of the disease in the population is known to be very low, only 0.1%. The test
correctly identifies the disease in 95% of cases when it’s present. The test
incorrectly indicates the presence of the disease in 3%, of cases where it’s not
actually present. The patient has just received a positive test result for the
disease. What is the probability that he actually has the disease?

Solution: Let 𝐷 denote the event of having the desease for a member of the
population, then ℙ(𝐷) = 0.001 (0.1%). Let 𝑇 denote the event of the positive

23



MA-M27 Probability and Statistics for Data Science Lecture Notes

test result. Then we know that

ℙ(𝑇 |𝐷) = 0.95, ℙ(𝑇 |𝐷𝑐) = 0.03.

By the very definition, 𝐷 and 𝐷𝑐 form a partition of Ω. Then

ℙ(𝐷|𝑇 ) = ℙ(𝑇 |𝐷) ⋅ ℙ(𝐷)
ℙ(𝑇 |𝐷) ⋅ ℙ(𝐷) + ℙ(𝑇 |𝐷𝑐) ⋅ ℙ(𝐷𝑐)

= 0.95 ⋅ 0.001
0.95 ⋅ 0.001 + 0.03 ⋅ (1 − 0.001)

≈ 0.0306.

So, given a positive test result for the disease, the probability that the patient
actually has the disease is just 3.06%.

24



3. Discrete Probability Distributions

3.1 Discrete Random Variables and their
Characteristics

Definition 3.1. A random variable is a quantity which depends on random
events. More rigorously, a random variable 𝑋 is a function 𝑋 ∶ Ω → ℝ.

Example 3.2. Three fair six-sided dices are thrown simultaneously. Let 𝑋
be the sum of scores on the dices. Then Ω consists of 𝜔 = (𝑎, 𝑏, 𝑐) where
𝑎, 𝑏, 𝑐 ∈ {1, … , 6}, and 𝑋 ∶ Ω → ℝ, 𝑋(𝜔) = 𝑎 + 𝑏 + 𝑐. Thus, 𝑋 may take only
values from the finite set {3, 4, … , 18}, and hence, 𝑋 is a discrete random
variable.

Memorize

If a random variable 𝑋 takes values only from a discrete set {𝑥1, 𝑥2, …},
then 𝑋 is called a discrete random variable. If 𝑋 can take any values
from an interval on the real line, then 𝑋 is called a continuous random
variable.

Definition 3.3. A probability distribution of a random variable 𝑋 ∶ Ω →
ℝ is a mapping which assigns to each interval 𝐸 ⊂ ℝ the value of ℙ(𝑋 ∈ 𝐸).
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Memorize

The cumulative distribution function (CDF) of a discrete random
variable 𝑋 ∶ Ω → {𝑥1, 𝑥2, …} is the function 𝐹𝑋 ∶ ℝ → [0, 1] defined by

𝐹𝑋(𝑥) = ∑
𝑥𝑖≤𝑥

ℙ(𝑋 = 𝑥𝑖) = ℙ(𝑋 ≤ 𝑥).

1 0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0

F X
(x

)

Figure 3.1: Cumulative function of the random variable 𝑋 ∶ Ω → {0, 2, 3}
with ℙ(𝑋 = 0) = 0.2, ℙ(𝑋 = 2) = ℙ(𝑋 = 3) = 0.4

Probability distributions provide a way to model and analyze random phe-
nomena.

Memorize

A discrete probability density function (discrete PDF) a.k.a.
a probability mass function (PMF) is a function that gives the
probability that a discrete random variable is exactly equal to some
value:

𝑝𝑋(𝑥) = ℙ(𝑋 = 𝑥).
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Remember

• 0 ≤ 𝐹𝑋(𝑥) ≤ 1
• 𝐹𝑋 is non-decreasing
• ℙ(𝑎<𝑋≤𝑏) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎)
• 0 ≤ 𝑝𝑋(𝑥) ≤ 1
• If 𝑋 ∶ Ω → {𝑥1, 𝑥2, …} then

𝑝𝑋(𝑥1) + 𝑝𝑋(𝑥2) + … = 1

Example 3.4. You throw two six-sided fair dice and calculate the sum of the
numbers rolled. Let 𝑋 be the random variable representing the sum. Find
and sketch the CDF of 𝑋.

Solution: We have that Ω = {(𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ {1, 2, … , 6}}, and for 𝜔 = (𝑎, 𝑏),
𝑋(𝜔) = 𝑎 + 𝑏. Then 𝑋 ∈ {2, 3, … , 12}, and

𝑝𝑋(𝑘) = ℙ(𝑋 = 𝑘) = ♯{(𝑎, 𝑏) ∣ 𝑎 + 𝑏 = 𝑘}
♯(Ω)

.

Note that ♯(Ω) = 6 ⋅ 6 = 36. Next

2 = 1 + 1, 3 = 1 + 2 = 2 + 1, 4 = 1 + 3 = 2 + 2 = 3 + 1,
5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1, 6 = 1 + 5 = 2 + 4 = 3 + 3 = 4 + 2 = 5 + 1,

7 = 1 + 6 = 2 + 5 = 3 + 4 = 4 + 3 = 5 + 2 = 6 + 1, 8 = 2 + 6 = 3 + 5 = 4 + 4 = 5 + 3,
9 = 3 + 6 = 3 + 5 = 5 + 4 = 6 + 3, 10 = 4 + 6 = 5 + 5 = 6 + 4,

11 = 5 + 6 = 6 + 5, 12 = 6 + 6,

therefore,

𝑝𝑋(2) = 1
36

, 𝑝𝑋(3) = 2
36

, 𝑝𝑋(4) = 3
36

, 𝑝𝑋(5) = 4
36

,

𝑝𝑋(6) = 5
36

, 𝑝𝑋(7) = 6
36

, 𝑝𝑋(8) = 5
36

, 𝑝𝑋(9) = 4
36

,

𝑝𝑋(10) = 3
36

, 𝑝𝑋(11) = 2
36

, 𝑝𝑋(12) = 1
36

.
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Therefore,

𝐹𝑋(𝑥) =

⎧
{
{
{
{
{
{
{
{
{
{
⎨
{
{
{
{
{
{
{
{
{
{
⎩

0, if 𝑥 < 2,
1

36 , if 2 ≤ 𝑥 < 3
3

36 , if 3 ≤ 𝑥 < 4
6

36 , if 4 ≤ 𝑥 < 5
10
36 , if 5 ≤ 𝑥 < 6
15
36 , if 6 ≤ 𝑥 < 7
21
36 , if 7 ≤ 𝑥 < 8
26
36 , if 8 ≤ 𝑥 < 9
30
36 , if 9 ≤ 𝑥 < 10
33
36 , if 10 ≤ 𝑥 < 11
34
36 , if 11 ≤ 𝑥 < 12
1, if 𝑥 ≥ 12.

Memorize

The expected value (mean) 𝔼(𝑋) of a random variable 𝑋 is the
average value it takes. If 𝑋 ∶ Ω → {𝑥1, 𝑥2, …}, then

𝔼(𝑋) ∶= ∑
𝑖

𝑥𝑖 ⋅ 𝑝𝑋(𝑥𝑖) = ∑
𝑖

𝑥𝑖 ⋅ ℙ(𝑋 = 𝑥𝑖).

Example 3.5. Calculate the expected value of the random variable 𝑋 (sum
of two fair six-sided dice rolls) created in Example 3.4.

Solution: We have

𝔼(𝑋) =
12

∑
𝑖=2

𝑖 ⋅ 𝑝𝑋(𝑖)

= 2 ⋅ 1
36

+ 3 ⋅ 2
36

+ 4 ⋅ 3
36

+ 5 ⋅ 4
36

+ 6 ⋅ 5
36

+ 7 ⋅ 6
36

+ 8 ⋅ 5
36

+ 9 ⋅ 4
36

+ 10 ⋅ 3
36

+ 11 ⋅ 2
36

+ 12 ⋅ 1
36

= 252
36

= 7.

Remember

• For any random variable 𝑋 ∶ Ω → ℝ and any number 𝑎 ∈ ℝ,

𝔼(𝑎𝑋) = 𝑎𝔼(𝑋).
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• For any random variables 𝑋, 𝑌 ∶ Ω → ℝ,

𝔼(𝑋 + 𝑌 ) = 𝔼(𝑋) + 𝔼(𝑌 ).

Memorize

The variance Var(𝑋) of a random variable 𝑋 is a measure of the spread
of its values.

Var(𝑋) = 𝔼((𝑋 − 𝔼(𝑋))2) = 𝔼(𝑋2) − (𝔼(𝑋))2 ≥ 0.

Example 3.6. Calculate the variance of the random variable 𝑋 (sum of two
fair six-sided dice rolls) created in Example 3.4.

Solution: We can use the formula

Var(𝑋) =
12

∑
𝑖=2

𝑖2 ⋅ 𝑝𝑋(𝑖) − (𝔼(𝑋))2

= 22 ⋅ 1
36

+ 32 ⋅ 2
36

+ 42 ⋅ 3
36

+ 52 ⋅ 4
36

+ 62 ⋅ 5
36

+ 72 ⋅ 6
36

+ 82 ⋅ 5
36

+ 92 ⋅ 4
36

+ 102 ⋅ 3
36

+ 112 ⋅ 2
36

+ 122 ⋅ 1
36

− 72

= 1974
36

− 49 = 35
6

≈ 5.83.

Memorize

The standard deviation of a random variable 𝑋 ∶ Ω → ℝ is the square
root of the variance of 𝑋:

𝜎(𝑋) ∶= √Var(𝑋).

Definition 3.7. Two random variables 𝑋 ∶ Ω → ℝ and 𝑌 ∶ Ω → ℝ are called
independent if, for any 𝑎, 𝑏 ∈ ℝ, the events

{𝑋 ≤ 𝑎} ∶= {𝜔 ∈ Ω ∣ 𝑋(𝜔) ≤ 𝑎} and {𝑌 ≤ 𝑏} ∶= {𝜔 ∈ Ω ∣ 𝑌 (𝜔) < 𝑏}

are independent.
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Remember

• For any random variable 𝑋 ∶ Ω → ℝ and any number 𝑎 ∈ ℝ,

Var(𝑎𝑋) = 𝑎2 Var(𝑋).

• For any independent random variables 𝑋, 𝑌 ∶ Ω → ℝ,

𝔼(𝑋𝑌 ) = 𝔼(𝑋) ⋅ 𝔼(𝑌 )

and
Var(𝑋 + 𝑌 ) = Var(𝑋) + Var(𝑌 ).

3.2 Bernoulli Trials
Definition 3.8. Conisder an experiment with two only possible outcomes:
success (denoted by 1) and failure (denoted by 0). We will call such experi-
ments Bernoulli trials.

3.2.1 Bernoulli Distribution
Definition 3.9. A random variable 𝑋 has the Bernoulli distribution if
𝑋 can take only two values, usually they are 1 and 0. It models, hence, a
Bernoulli trial. 𝑋 is fully characterized by a single parameter 𝑝 ∈ [0, 1], the
probability of success, i.e. its PMF (probability mass function) is

𝑝𝑋(1) = ℙ(𝑋 = 1) = 𝑝, 𝑝𝑋(0) = ℙ(𝑋 = 0) = 1 − 𝑝.

Remember

Since 𝑋 = 𝑋2, we have that

𝔼(𝑋) = 𝔼(𝑋2) = 1 ⋅ 𝑝 + 0 ⋅ (1 − 𝑝) = 𝑝,
Var(𝑋) = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝).

3.2.2 Binomial Distribution
Definition 3.10. The binomial distribution models the number of suc-
cesses in a fixed number of independent and identically distributed Bernoulli
trials. It is fully characterized by two parameters: 𝑛 (the number of trials) and
𝑝 (the probability of success in each trial). We denote this 𝑋 ∼ 𝐵𝑖𝑛(𝑛, 𝑝).
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Note that the number 𝑘 of successes in 𝑛 trials may be any integer number
between 0 (no successes at all) and 𝑛 (all trials were successful).

Remark. Recall that
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛

is called the factorial of 𝑛.

We set
0! = 1,

and also

(𝑛
0
) = (0

0
) = 1.

Memorize

The PMF of the Binomial distribution is:

𝑝𝑋(𝑘) = ℙ(𝑋 = 𝑘) = (𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘,

where (𝑛
𝑘) represents the binomial coefficient, defined as

(𝑛
𝑘

) = 𝑛!
𝑘!(𝑛 − 𝑘)!

=

𝑘 factors
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑛 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) ⋅ … ⋅ (𝑛 − 𝑘 + 1)

1 ⋅ 2 ⋅ 3 ⋅ … ⋅ 𝑘
.

Remember

We can write 𝑋 = 𝑌1 +…+𝑌𝑛 where 𝑌1, … , 𝑌𝑛 are independent random
variables with identical Bernoulli distributions with the parameter 𝑝.
Then

𝔼(𝑋) = 𝑛𝑝, Var(𝑋) = 𝑛𝑝(1 − 𝑝).

Remark. Recall that the sum of all values of the PMF should be 1, i.e.
𝑛

∑
𝑘=0

ℙ(𝑋 = 𝑘)

=
𝑛

∑
𝑘=0

(𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘 = 1.

The latter equality is just the binomial formual.
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Example 3.11. In a game, a player has a 20% chance of winning each round.
If the player plays 5 rounds, calculate the probability of winning exactly 3
rounds.

Solution: since 𝑛 = 5 (number of rounds) and 𝑝 = 0.2 (probability of winning
a round), we can calculate

ℙ(𝑋 = 3) = (5
3
)(0.2)3(1 − 0.2)5−3 = 5 ⋅ 4 ⋅ 3

1 ⋅ 2 ⋅ 3
⋅ 0.008 ⋅ 0.64 = 0.0512.

Example 3.12. A company manufactures light bulbs, and 90% of them are
of good quality, while the rest are defective. If a customer buys 50 light bulbs,
what is the expected number of defective bulbs in the purchase?

Remark. Note that “success” does not need to mean that something good
happened, it depends on what we are going to calculate.

Solution: Since we are interested in the number of defective bulbs, we consider
a Bernoulli trial where success would mean that a bulb is defective. Then
𝑝 = 0.1 and 𝑛 = 50, therefore,

𝔼(𝑋) = 50 ⋅ 0.1 = 5.
So, the expected number of defective bulbs in the purchase is 5.

Remark. Remember, the following relation may be useful:

(𝑛
𝑘

) = ( 𝑛
𝑛 − 𝑘

).

For example,

(50
49

) = (50
1

) = 50,

(50
48

) = (50
2

) = 50 ⋅ 49
2

.

Example 3.13. A basketball player has a free throw success rate of 70%. If
she attempts 20 free throws, find the variance of the number of successful
free throws.

Solution: In this case, 𝑝 = 0.7 is the probability of making a free throw, and
𝑛 = 20. Therefore,

Var(𝑋) = 𝜎2
𝑋 = 20 ⋅ 0.7 ⋅ (1 − 0.7) = 4.2.

So, the variance of the number of successful free throws is 4.2.
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3.2.3 Geometric Distribution
Definition 3.14. The geometric distribution models the number of trials
needed to achieve the first success in a sequence of independent and identi-
cally distributed Bernoulli trials. It is characterized by a parameter 𝑝 (the
probability of success in each trial). We denote this 𝑋 ∼ 𝐺𝑒𝑜𝑚(𝑝).

The corresponding random variable can take any natural value 𝑛 = 1, 2, 3, …
(where 𝑛 denotes the number of the first succesful trial).

Remark. We have that ∞
∑
𝑛=1

ℙ(𝑋 = 𝑛)

=
∞

∑
𝑛=1

(1 − 𝑝)𝑛−1𝑝

= 𝑝
1 − (1 − 𝑝)

= 1.

Memorize

We assume that 𝑝 ≠ 0 (otherwise, we would need infinitely many trials
for success). The PMF of the geometric distribution is:

ℙ(𝑋 = 𝑛) = (1 − 𝑝)𝑛−1𝑝.

Also:
𝔼(𝑋) = 1

𝑝
, Var(𝑋) = 1 − 𝑝

𝑝2 .

Example 3.15. A student is preparing for a multiple-choice exam, where
each question has 4 choices, and only one is correct. If the student guesses
the answers, what is the probability that the first correct answer occurs on
the third guess? How many guesses the student would need to do in average
to get the correct answer?

Solution: In this case, 𝑝 = 1
4 (probability of guessing the correct answer) and

we want to find
ℙ(𝑋 = 3) = (1 − 1

4
)3−1 ⋅ 1

4
= 9

64
.

Next,
𝔼(𝑋) = 1

𝑝
= 1

1
4

= 4,

i.e. in average, the student would need to do 4 guesses to answer correctly.
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3.2.4 Negative Binomial Distribution
Definition 3.16. The negative binomial distribution models the number
of failures in a sequence of independent and identically distributed Bernoulli
trials before a specified number of successes occurs. It is characterized by two
parameters: 𝑟 (the number of successes) and 𝑝 (the probability of success in
each trial). We denote this 𝑋 ∼ 𝑁𝐵(𝑟, 𝑝).

If 𝑋 = 𝑘 is the considered number of failures, the total required number of
trials is 𝑛 = 𝑘 + 𝑟.

Memorize

The PMF of the negative binomial distribution is:

ℙ(𝑋 = 𝑘) = (𝑘 + 𝑟 − 1
𝑘

)𝑝𝑟(1 − 𝑝)𝑘.

Also:
𝔼(𝑋) = 𝑟(1 − 𝑝)

𝑝
= 𝑟

𝑝
− 𝑟, Var(𝑋) = 𝑟(1 − 𝑝)

𝑝2

Example 3.17. A student is practicing basketball free throws with a success
probability of 0.7. The student stops as soon as they achieves 3 successful
free throws. What is the probability that by that time the student would
have 2 failures (unsuccessful throws)?

Remark. The equivalent formulation of Example 3.17 is:

What is the probability that it will take the student exactly 5 trials to make
3 successful free throws?

Solution: In this problem, 𝑝 = 0.7 (probability of success), 𝑟 = 3 (number of
desired successes), and 𝑘 = 2 (number of failures). Then

ℙ(𝑋 = 2) = (2 + 3 − 1
2

) ⋅ (0.7)3 ⋅ (0.3)2 = 4 ⋅ 3
1 ⋅ 2

⋅ 0.49 ⋅ 0.09 = 0.2646.

Example 3.18. In a quality control process, a manufacturer wants to inspect
several items to find 2 defective items. If the probability of finding a defective
item is 0.1, what is the expected number of items that need to be inspected?

Solution: In this problem, 𝑝 = 0.1, and 𝑟 = 2. The number 𝑋 of items
that need to be inspected to find 𝑟 = 2 defective items is the sum of the
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number 𝑌 of proper (non-defective) items and number 2 of defective items,
i.e. 𝑋 = 𝑌 + 2, where 𝑌 has the negative binomial distribution as the number
of “failures” (here “success” is to find a defective item). Then

𝔼(𝑌 ) = 2
0.1

− 2 = 18,

and hence,
𝔼(𝑋) = 𝔼(𝑌 + 2) = 𝔼(𝑌 ) + 2 = 20.

3.3 Poisson Distribution
Definition 3.19. The Poisson distribution models the number of indepen-
dent events occurring in a fixed interval of time or space. It is characterized
by a single parameter 𝜆 > 0 (the average rate of events per interval of the
same size). We denote this by 𝑋 ∼ 𝑃𝑜(𝜆).

Memorize

The PMF of the Poisson distribution is:

ℙ(𝑋 = 𝑛) = 𝜆𝑛

𝑛!
𝑒−𝜆.

The expected value and the variance of the Poisson random variable are
equal:

𝔼(𝑋) = Var(𝑋) = 𝜆.

Remark. Note that ∞
∑
𝑛=0

𝜆𝑛

𝑛!
𝑒−𝜆 = 1.

Remember

It is crucial to use for 𝜆 the average rate of events per interval under
investigation (see Example 3.20 below).

Example 3.20. In a call center, calls arrive at an average rate of 5 calls per
minute. Calculate the probability that

a) exactly 15 calls will arrive in the next 2 minutes;

b) at least 2 calls will arrive in the next 30 seconds.
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Solution:

a) Since we are interested in the number of call within 2 minutes, one
needs to find the average rate of calls per 2 minutes, that is 2 ⋅ 5 = 10
calls. Hence, 𝜆 = 6. Then, for 𝑋 ∼ 𝑃𝑜(10),

ℙ(𝑋 = 15) = 1015

15!
𝑒−10 ≈ 0.0347.

b) We need to find

ℙ(𝑋 ≥ 2) = ℙ(𝑋 = 2) + ℙ(𝑋 = 3) + ℙ(𝑋 = 4) + …

(infinitely many). Instead, we can find the probability of compliment
event:

ℙ(𝑋 ≤ 1) = 1 − ℙ(𝑋 ≥ 2).

To find 𝜆 we notice that the time interval is not 30 seconds, i.e. 0.5
minutes, and hence, the average rate of calls per 30 seconds is 0.5⋅5 = 2.5.
Hence, 𝜆 = 2.5 and

ℙ(𝑋 ≤ 1) = ℙ(𝑋 = 0) + ℙ(𝑋 = 1)

= 2.50

0!
𝑒−2.5 + 2.51

1!
𝑒−2.5 = 𝑒−2.5 + 2.5𝑒−2.5

= 3.5𝑒−2.5 ≈ 0.2873.

Therefore,

ℙ(𝑋 ≥ 2) = 1 − ℙ(𝑋 ≤ 1) ≈ 1 − 0.2873 = 0.7127.

Remember

Often, in the problems, 𝜆 is understood is the average rate per unit time.
Then the PMF of the distribution of events accuring in a time interval
of length 𝑡 (meaning “𝑡 units of time”) is

ℙ(𝑋 = 𝑛) = (𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡.
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4. Linear Regression and Correlation, Logistic

Regression

Useful resources for linear regression are Theory and Problems of Proba-
bility and Statistics by M.R.Spiegel and How to Use Statistics by S.Lakin.
Furthermore, useful resources for logistic regression are Generalised Linear
Models by P.McCullagh and J.A.Nelder, and Using Multivariate Statistics
by B.G.Tabachnick and L.S.Fidell. The material taught in this chapter will
also be met from a machine learning perspective in MA-M28 Modelling and
Machine Learning — please see chapters 5 and 6 of Essential Math for Data
Science by T.Nield if you would like an insight into this.

5 10 15
20

40

60

80
data
fitted line

Figure 4.1
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Recall in Example 1.28 we discussed bivariate data and associated scatter
plot. Sometimes it is visually clear that a linear relationship exists between
the variables, for example, in the scatter plot in Example 1.28 it seems that
the more time is spent revising the higher the exam mark the student receives.
The diagram above contains the same data, but with a line indicating the
likely relationship between the variables.

A linear regression fits a straight line to observed data, attempting to demon-
strate a linear relationship between variables and make predictions on new
data yet to be observed. The following method will begin to address this.

4.1 The Method of Least Squares
Once a statistical model has been set up, its parameters must be estimated
from the data. The method of least squares can provide good such estimates.
The method minimises the sum of squared residuals, i.e. it minimises the
sum of the square of the differences between an observed value and the value
produced by the model. We will concentrate on linear least squares which
will provide the theory behind simple linear regression.

Model line

Residuals

Figure 4.2

Assuming that we have data pairs (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛), the model line will
take the form

𝔼(𝑦) = 𝛽0 + 𝛽1𝑥,

where 𝑦 is the dependent variable (response variable) (it depends on 𝑥!)
and 𝑥 is the independent variable (explanatory/predictor variable) (it
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does not depend on another variable). In fact the variables will be related by

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖,

where 𝜖 is the error. It is clear that there is some error when using our model
line. By minimising the sum of the square of the residuals (using partial
differentiation) we arrive at the following estimates:

Remember

̂𝛽1 =
∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖 − 𝑛 ̄𝑥 ̄𝑦
∑𝑛

𝑖=1 𝑥2
𝑖 − 𝑛 ̄𝑥2 =

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2 =
𝑆𝑥𝑦

𝑆𝑥𝑥
;

and
̂𝛽0 = ̄𝑦 − ̂𝛽1 ̄𝑥.

Note that
𝑆𝑦𝑦 =

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2 =
𝑛

∑
𝑖=1

𝑦2
𝑖 − 𝑛 ̄𝑦2.

The least squares model is therefore

̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥. (4.1)

Correlation
The strength of a linear relationship between the variables can be measured
by the Pearson correlation coefficient (or just the correlation coefficient) which
is given by

Remember

𝑟 =
𝑆𝑥𝑦

√𝑆𝑥𝑥𝑆𝑦𝑦
.

𝑟 can take values between −1 and 1 where −1 and 1 represent a perfect linear
relationship. 𝑟 = 0 means that there is no linear relationship. A positive
value of 𝑟 denotes a positive correlation while a negative value of 𝑟 denotes a
negative correlation. As a general rule of thumb we use the following criteria:
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Remember

|𝑟| > 0.7 Strong correlation
0.7 ≥ |𝑟| > 0.4 Moderate correlation

|𝑟| ≤ 0.4 Weak correlation

4.2 Simple Linear Regression
This is a process to obtain a suitable straight line to predict values of one
variable (𝑦) from the values of the other (𝑥), where there is a linear relationship
between them. The most common approach is to use the least squares model
above, i.e.

̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥.

We can use the correlation coefficient 𝑟 to test the strength of the linear
relationship between the variables, as above, but also 𝑟2 (often 𝑅2 is used)
can be used. 𝑟2 gives the proportion of the variance of 𝑦 that is explained by
variation in 𝑥, and the closer this value is to 1 the stronger the relationship
(clearly the closer 𝑟2 is to 0 the weaker the relationship). Essentially it
measures how well the regression model fits the real data.
Now we are in a position to return to the example above and form a regression
line for the data.
Note that correlation does not necessarily imply causation — variables may
be related for no apparent reason.

Example 4.1. This example investigates the relationship between revision
time and exam marks — see the table below for data. The calculations that
we need for the estimates ̂𝛽0 and ̂𝛽1 can be found in the following table using
the fact that ̄𝑥 = 11.8 and ̄𝑦 = 59:

Revision Hours (𝑥𝑖) 18 2 13 14 6 15 16 9 10 15
Mark (𝑦𝑖) 82 20 42 68 41 95 72 48 60 62 **Sum**

𝑥𝑖 − ̄𝑥 6.2 -9.8 1.2 2.2 -5.8 3.2 4.2 -2.8 -1.8 3.2 0
𝑦𝑖 − ̄𝑦 23 -39 -17 9 -18 36 13 -11 1 3 0

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦) 142.6 382.2 -20.4 19.8 104.4 115.2 54.6 30.8 -1.8 9.6 837
(𝑥𝑖 − ̄𝑥)2 38.44 96.04 1.44 4.84 33.64 10.24 17.64 7.84 3.24 10.24 223.6
(𝑦𝑖 − ̄𝑦)2 529 1521 289 81 324 1296 169 121 1 9 4340

Then
̂𝛽1 =

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2 = 837
223.6

= 3.743
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and
̂𝛽0 = ̄𝑦 − ̂𝛽1 ̄𝑥 = 59 − 3.743 × 11.8 = 14.829.

Therefore the equation of the regression line is given by,

̂𝑦 = 3.743𝑥 + 14.829.

The Pearson correlation coefficient is given by

𝑟 =
𝑆𝑥𝑦

√𝑆𝑥𝑥𝑆𝑦𝑦
= 837√

223.6
√

4340
= 0.85,

indicating a strong positive correlation. The value of 𝑟2 is 0.723 indicating
that 72.3% of the variance of the Marks is explained by Revision. We conclude
therefore that the regression model fits the data well in this case.

The regression line can then be used to estimate the value of 𝑦 for a given 𝑥,
for example, if we wanted to predict the exam mark obtained for 11 hours of
revision we obtain,

̂𝑦 = 3.743 × 11 + 14.829 ≈ 56.

Common sense should be used when predicting using the regression model;
we cannot predict outside the possible range of the 𝑥 values, we would not,
for example, try to predict what happens if a student were to revise for -5
hours.

Example 4.2. Calculate a regression line for the data below (the relevant
conditions for linear regression may be assumed):

Classes Missed (𝑥𝑖) 3 30 20 7 24 1 5 16 10 12
Mark (𝑦𝑖) 82 20 42 68 41 95 72 48 60 62

where
̄𝑥 = 12.8
̄𝑦 = 59

𝑆𝑥𝑥 =
𝑛

∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2 = 821.6

𝑆𝑥𝑦 =
𝑛

∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦) = −1839

𝑆𝑦𝑦 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2 = 4340.
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We now find
̂𝛽1 =

𝑆𝑥𝑦

𝑆𝑥𝑥
= −1839

821.6
= −2.238

̂𝛽0 = ̄𝑦 − ̂𝛽1 ̄𝑥 = 87.65.
Therefore the regression line is given by

̂𝑦 = −2.238𝑥 + 87.650.

and the correlation coefficient by

𝑟 =
𝑆𝑥𝑦

√𝑆𝑥𝑥𝑆𝑦𝑦
= −1839√

821.6
√

4340
= −0.97,

indicating a very strong negative correlation. 𝑟2 = 0.941, indicating that
94.1% of the variance of Marks is explained by Classes Missed and we conclude
that the regression model fits the data very well.

4.3 Multiple Linear Regression
This method is an extension of the model we met in simple linear regression,
i.e.

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖

to the model

Remember

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖,

where we have 𝑛 independent variables, 𝑥1, … , 𝑥𝑛 and the single dependent
variable 𝑦 (dependent on these 𝑥1, … , 𝑥𝑛).

In particular, we will concentrate on the case where we have 2 independent
variables 𝑥1 and 𝑥2, i.e. the model,

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜖.

Obtaining the equations for the coefficients is easier if we code the variables
in the following way:

𝑣𝑖 = 𝑦𝑖 − ̄𝑦,
𝑢1𝑖 = 𝑥1𝑖 − ̄𝑥1,
𝑢2𝑖 = 𝑥2𝑖 − ̄𝑥2.
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We now write the model as

𝑉 = 𝛽′
0 + 𝛽1𝑢1 + 𝛽2𝑢2 + 𝑒.

The constant term changes from 𝛽0 to 𝛽′
0. Again the method of least squares

is used where the quantity to be minimised with respect to variation in 𝛽′
0,

𝛽1 and 𝛽2 is

𝑄 =
𝑛

∑
𝑖=1

(𝑣𝑖 − 𝛽′
0 − 𝛽1𝑢1𝑖 − 𝛽2𝑢2𝑖)2.

Again, we will not go into the details of this process as it uses methods that
are beyond the scope of this module. Essentially the process results with the
equations:

̂𝛽1

𝑛
∑
𝑖=1

𝑢2
1𝑖 + ̂𝛽2

𝑛
∑
𝑖=1

𝑢1𝑖𝑢2𝑖 =
𝑛

∑
𝑖=1

𝑢1𝑖𝑣𝑖,

̂𝛽1

𝑛
∑
𝑖=1

𝑢1𝑖𝑢2𝑖 + ̂𝛽2

𝑛
∑
𝑖=1

𝑢2
2𝑖 =

𝑛
∑
𝑖=1

𝑢2𝑖𝑣𝑖.

These are sometimes called the normal equations — although no relation to
the normal distribution. Using the notations

𝑆𝑝𝑞 =
𝑛

∑
𝑖=1

𝑢𝑝𝑖𝑢𝑞𝑖 =
𝑛

∑
𝑖=1

(𝑥𝑝𝑖 − ̄𝑥𝑝)(𝑥𝑞𝑖 − ̄𝑥𝑞), 𝑝, 𝑞 = 1, 2,

𝑆0𝑝 =
𝑛

∑
𝑖=1

𝑢𝑝𝑖𝑣𝑖 =
𝑛

∑
𝑖=1

(𝑥𝑝𝑖 − ̄𝑥𝑝)(𝑦𝑖 − ̄𝑦), 𝑝 = 1, 2,

we may write the normal equations as

̂𝛽1𝑆11 + ̂𝛽2𝑆12 = 𝑆01,
̂𝛽1𝑆12 + ̂𝛽2𝑆22 = 𝑆02.

Using standard techniques for solving simultaneous equations and 𝐷 =
𝑆11𝑆22 − 𝑆2

12 we find
̂𝛽1 = 𝑆22𝑆01 − 𝑆12𝑆02

𝐷
̂𝛽2 = 𝑆11𝑆02 − 𝑆12𝑆01

𝐷
.

Finally,
̂𝛽0 = ̄𝑦 − 𝑏1 ̄𝑥1 − 𝑏2 ̄𝑥2.

this gives us the following model:

̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2.
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If we return to the example of predicting exam marks, but now based on
both Revision Hours and Coursework Marks, this would be a situation of a
multiple linear regression with two predictor/independent variables.

Example 4.3. Dice were thrown to obtain ten values of each of the following:
𝑋1 = value on a twelve-sided die, 𝑋2 = twice the value on a six-sided die,
𝑍 =value on a six-sided die, 𝑌 = 𝑋1 + 𝑋2 + 𝑍. The values obtained were

Total
𝑋1 8 7 11 3 10 7 5 11 8 7 77
𝑋2 6 12 4 8 12 10 4 2 4 4 66
𝑌 18 23 21 17 25 18 13 19 14 14 182

We find that

𝑆11 =
𝑛

∑
𝑖=1

(𝑥1𝑖 − ̄𝑥1)2 =
𝑛

∑
𝑖=1

𝑥2
1𝑖 −

(∑𝑛
𝑖=1 𝑥1𝑖)2

𝑛
= 58.1

𝑆22 =
𝑛

∑
𝑖=1

(𝑥2𝑖 − ̄𝑥2)2 =
𝑛

∑
𝑖=1

𝑥2
2𝑖 −

(∑𝑛
𝑖=1 𝑥2𝑖)2

𝑛
= 120.4

𝑆12 =
𝑛

∑
𝑖=1

(𝑥1𝑖 − ̄𝑥1)(𝑥2𝑖 − ̄𝑥2) =
𝑛

∑
𝑖=1

𝑥1𝑖𝑥2𝑖 −
∑𝑛

𝑖=1 𝑥1𝑖 ∑𝑛
𝑖=1 𝑥2𝑖

𝑛
= −16.2

𝑆01 =
𝑛

∑
𝑖=1

(𝑥1𝑖 − ̄𝑥1)(𝑦𝑖 − ̄𝑦) =
𝑛

∑
𝑖=1

𝑥1𝑖𝑦𝑖 −
∑𝑛

𝑖=1 𝑥1𝑖 ∑𝑛
𝑖=1 𝑦𝑖

𝑛
= 45.6

𝑆02 =
𝑛

∑
𝑖=1

(𝑥2𝑖 − ̄𝑥2)(𝑦𝑖 − ̄𝑦) =
𝑛

∑
𝑖=1

𝑥2𝑖𝑦𝑖 −
∑𝑛

𝑖=1 𝑥2𝑖 ∑𝑛
𝑖=1 𝑦𝑖

𝑛
= 84.8.

This gives the normal equations as follows:

58.1 ̂𝛽1 − 16.2 ̂𝛽2 = 45.6
−16.2 ̂𝛽1 + 120.4 ̂𝛽2 = 84.8.

Then
𝐷 = 58.1 × 120.4 − (16.2)2 = 6732.8

̂𝛽1 = 120.4 × 45.6 + 16.2 × 84.8
𝐷

= 1.019

̂𝛽2 = 58.1 × 84.8 + 16.2 × 45.6
𝐷

= 0.841

̂𝛽0 = 18.2 − 1.019 × 7.7 − 0.841 × 6.6 = 4.803.
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Therefore the regression equation is

̂𝑦 = 4.803 + 1.019𝑥1 + 0.841𝑥2.

4.4 (Binary) Logistic Regression
The main use of logistic regression is to predict a binary outcome from a
linear combination of independent variables. For example, we may wish to
predict the probability of passing an exam from the independent variables
attendance at lectures and hours of revision. This is also used in insurance to
calculate the propensity to claim.

Firstly, the dependent variable 𝑌 ∼ 𝐵𝑖𝑛(1, 𝑝), and we want to use the a
linear combination of the independent variables to predict 𝑝.

For this method we make use of the logit function, which is the log odds.
In particular, we have

𝑜𝑑𝑑𝑠 = 𝑝
1 − 𝑝

.

Then, the link function we use is

logit(𝑝) = ln(𝑜𝑑𝑑𝑠) = ln( 𝑝
1 − 𝑝

) .

The graph of this function is as follows:

p

logit(p)

0.5 1

Figure 4.3
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Therefore, the model we consider is the following:

logit(𝑝) = ln( 𝑝
1 − 𝑝

) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 (4.2)

for independent, or predictor variables 𝑥1, … , 𝑥𝑛 and constant coefficients
𝛽0, … , 𝛽𝑛.

As we will be seeking estimates of 𝑝, i.e. ̂𝑝, from independent variables that
could take any real value, it makes sense to next consider the inverse of the
logit function. Let

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛,

then

𝑒𝑦 = 𝑝
1 − 𝑝

⟹ 𝑝 = (1 − 𝑝)𝑒𝑦 = 𝑒𝑦 − 𝑝𝑒𝑦

⟹ 𝑝(1 + 𝑒𝑦) = 𝑒𝑦

⟹ 𝑝 = 𝑒𝑦

1 + 𝑒𝑦 = 𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑛𝑥𝑛

1 + 𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑛𝑥𝑛

This is an example of a sigmoid function, the graph of which is as follows:

y

p

0

1

Figure 4.4

From the graph above, we can see that for any real input 𝑦, we get 0 < 𝑝 < 1
which intuitively makes sense.

In practice, we obtain an estimate ̂𝑝 of 𝑝 using maximum likelihood estimates
of the coefficients 𝛽0, 𝛽1, … , 𝛽𝑛, i.e.
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̂𝑝 = 𝑒 ̂𝛽0+ ̂𝛽1𝑥1+⋯+ ̂𝛽𝑛𝑥𝑛

1 + 𝑒 ̂𝛽0+ ̂𝛽1𝑥1+⋯+ ̂𝛽𝑛𝑥𝑛
.
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5. Continuous Probability Distributions

5.1 Continuous Random Variables and their
Characteristics

We recall that, see Definition 3.1, a random variable 𝑋 is a function 𝑋 ∶ Ω → ℝ.

Reminder

If 𝑋 can take any values from an interval on the real line, then 𝑋 is
called a continuous random variable.

We recall also, see Definition 3.3, that a probability distribution of a random
variable 𝑋 ∶ Ω → ℝ is a mapping which assigns to each interval 𝐸 ⊂ ℝ the
value of ℙ(𝑋 ∈ 𝐸).

Memorize

The cumulative distribution function (CDF) of a continuous ran-
dom variable 𝑋 ∶ Ω → ℝ is the continuous function 𝐹𝑋 ∶ ℝ → [0, 1]
defined by

𝐹𝑋(𝑥) = ℙ(𝑋 ≤ 𝑥).

As a result,
ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎).

Remark. As you can see, the same formula holds for a discrete random
variables, however, for continuous r.v. it does not provide an expression to
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calculate the probability. For this, we need the probaility denisty funciton
defined below.
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y = f(x)

x

y

a b

(a X b)

y = f(x)

x

y

c

(X c)

y = f(x)

x

y

c
(X c)

y = f(x)

x

y

f(x) dx = 1

Figure 5.1: Visual representation of probabilities for a continuous random
variable 50
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Memorize

The probability density function (PDF) of a continuous random
variable 𝑋 ∶ Ω → ℝ is the function 𝑓𝑋 ∶ ℝ → [0, ∞), such that, for any
𝑎, 𝑏 ∈ ℝ,

ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
𝑓𝑋(𝑥) d𝑥.

Properties:
• 𝑓𝑋(𝑥) ≥ 0

•
∞

∫
−∞

𝑓𝑋(𝑥) d𝑥 = 1

• 𝐹𝑋(𝑥) = ∫
𝑥

−∞
𝑓𝑋(𝑦) d𝑦

• 𝑓𝑋(𝑥) = 𝑑
𝑑𝑥

𝐹𝑋(𝑥) = 𝐹 ′
𝑋(𝑥)

Remember

For conitnuous random variables,

ℙ(𝑋 = 𝑎) = 0, 𝑎 ∈ ℝ.

Therefore,

ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) = ℙ(𝑎 ≤ 𝑋 < 𝑏) = ℙ(𝑎 < 𝑋 ≤ 𝑏)

= ℙ(𝑎 < 𝑋 < 𝑏) = ∫
𝑏

𝑎
𝑓𝑋(𝑥) d𝑥.

Also, the following formulas may be useful:

ℙ(𝑋 ≤ 𝑐) = ℙ(𝑋 < 𝑐) = 𝐹𝑋(𝑐) = ∫
𝑐

−∞
𝑓𝑋(𝑥) d𝑥,

ℙ(𝑋 ≥ 𝑐) = ℙ(𝑋 > 𝑐) = 1 − 𝐹𝑋(𝑐) = ∫
∞

𝑐
𝑓𝑋(𝑥) d𝑥.

Recall that the expected value (mean) 𝔼(𝑋) of a random variable 𝑋 is the
average value it takes.
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Memorize

If 𝑋 ∶ Ω → ℝ is a continuous random variable, then

𝔼(𝑋) ∶= ∫
∞

−∞
𝑥 ⋅ 𝑓𝑋(𝑥) d𝑥

(provided that the integral takes the finite value).

Remember

More generally, if 𝑔 ∶ ℝ → ℝ, then

𝔼(𝑔(𝑋)) = ∫
∞

−∞
𝑔(𝑥)𝑓𝑋(𝑥) d𝑥.

In particular,
𝔼(𝑋2) = ∫

∞

−∞
𝑥2𝑓𝑋(𝑥) d𝑥.

Recall that the variance Var(𝑋) of a random variable 𝑋 is a measure of the
spread of its values, and it is defined through the formulas

Var(𝑋) = 𝔼((𝑋 − 𝔼(𝑋))2) = 𝔼(𝑋2) − (𝔼(𝑋))2 ≥ 0.

Memorize

If 𝑋 ∶ Ω → ℝ is a continuous random variable, then

Var𝑋 = ∫
∞

−∞
(𝑥 − 𝔼(𝑋))2𝑓(𝑥) d𝑥

= ∫
∞

−∞
𝑥2 ⋅ 𝑓𝑋(𝑥) d𝑥 − (∫

∞

−∞
𝑥 ⋅ 𝑓𝑋(𝑥) d𝑥)

2

.

5.2 Main Examples

5.2.1 Uniform distribution
Definition 5.1. The uniform distribution is a continuous probability
distribution where all outcomes within a specified interval are equally likely.
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a b

1
b a

x

y

0

y = fX(x)

a b

1

x

y

0

y = FX(x)

Figure 5.2: Graphs of PDF and CDF of 𝑋 ∼ 𝑈(𝑎, 𝑏).

Memorize

The PDF of the uniform distribution on an interval [𝑎, 𝑏] is given by

𝑓(𝑥) =
⎧{
⎨{⎩

1
𝑏 − 𝑎

, if 𝑎 ≤ 𝑥 ≤ 𝑏

0, otherwise.
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The CDF of the uniform distribution on an interval [𝑎, 𝑏] is given by

𝐹(𝑥) =

⎧{{
⎨{{⎩

0, if 𝑥 < 𝑎
𝑥 − 𝑎
𝑏 − 𝑎

, if 𝑎 ≤ 𝑥 ≤ 𝑏

1, if 𝑥 > 𝑏.

Notation for a random variable with such distribution:

𝑋 ∼ 𝑈(𝑎, 𝑏).

The mean and variance of 𝑋 are given by:

𝔼(𝑋) = 𝑎 + 𝑏
2

,

Var(𝑋) = (𝑏 − 𝑎)2

12
.

Example 5.1. Let 𝑋 ∼ 𝑈(1, 5).

a) Find ℙ(2 < 𝑋 < 4).

b) Find 𝑐 ∈ [1, 5] such that ℙ(3 < 𝑋 < 𝑐) = 1
3
.

Solution: a) Here

𝑓𝑋(𝑥) = 1
5 − 1

= 1
4

, 𝑥 ∈ [1, 5].

Therefore,

ℙ(2 < 𝑋 < 4) = ∫
4

2

1
4
d𝑥 = 1

4
⋅ (4 − 2) = 1

2
.

b) We have
1
3

= ℙ(3 < 𝑋 < 𝑐) = ∫
𝑐

3

1
4
d𝑥 = 1

4
(𝑐 − 3),

hence,
𝑐 − 3 = 4

3
, 𝑐 = 13

3
∈ [1, 5].

54



MA-M27 Probability and Statistics for Data Science Lecture Notes

5.2.2 Exponential Distribution
Definition 5.2. Recall that the (discrete) Poisson random variable models
the number of independent events occurring in a fixed interval of time.The
exponential distribution is a continuous probability distribution that models
the time between these independent events. It is commonly used to model
waiting times.

0 x

y

y = fX(x)

0

1

x

y

y = FX(x)

Figure 5.3: Graphs of PDF and CDF of 𝑋 ∼ Exp(𝜆). Graphs are shown for
𝑥 ≥ 0 only. Both functions are equal to 0 for 𝑥 < 0.

Memorize

The PDF of the exponential distribution with a parameter 𝜆 > 0 is
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defined as:

𝑓𝑋(𝑥) = {
𝜆𝑒−𝜆𝑥, if 𝑥 ≥ 0
0, otherwise.

The corresponding CDF is

𝐹𝑋(𝑥) = {
1 − 𝑒−𝜆𝑥, if 𝑥 ≥ 0
0, otherwise.

Notation for a random variable with such distribution:

𝑋 ∼ Exp(𝜆).

The mean and variance of 𝑋 are given by:

𝔼(𝑋) = 1
𝜆

,

Var(𝑋) = 1
𝜆2 .

Example 5.2. Suppose the time between arrivals at a bus stop follows an
exponential distribution with a rate parameter 𝜆 = 0.05 arrivals per minute.

a) Calculate the probability that the next bus will arrive within the next
10 minutes.

b) Calculate the probability that you would need to wait at least 15
minutes until the next bus.

c) For how long on average you would need to wait for a bus?

Solution: a) Let 𝑋 ∼ Exp(0.05) be the waiting time for the next bus. Then

ℙ(𝑋 ≤ 10) = 𝐹𝑋(10) = 1 − 𝑒−0.05⋅10 = 1 − 𝑒−0.5 ≈ 0.3935.

b) We need to find

ℙ(𝑋 ≥ 15) = 1−ℙ(𝑋 < 15) = 1−𝐹𝑋(10) = 𝑒−0.05⋅15 = 𝑒−0.75 ≈ 0.4724.

c) Since
𝔼(𝑋) = 1

0.05
= 20,

you would need to wait, on average, for 20 minutes.
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5.2.3 Normal Distribution

Remember

• The Normal Distribution is also known as the Gaussian Dis-
tribution

• The shape of its PDF is symmetric and often called bell-shaped.
• The normal distribution is widely used in probability and statistics,

especially, because of the central limit theorem which we will
discuss later in this course. Its consequence is that the averages of
large samples behave simialrly, i.e. “normally”, regardless of the
individual behaviour of the elements in these samples.

2 x

y

y = fX(x), X (2, 32)

2 x

y
y = fX(x), X ( 2, 0.52)

Figure 5.4: Graphs of PDF of 𝑋 ∼ 𝒩(2, 32) and 𝑋 ∼ 𝒩(−2, 0.52), respec-
tively.
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Memorize

The normal distribution with the mean 𝜇 ∈ ℝ and the standard deviation
𝜎 > 0 is the continuous probability distribution with the PDF given by

𝑓𝑋(𝑥) = 1√
2𝜋𝜎

𝑒− (𝑥−𝜇)2

2𝜎2 .

Notation for the random variable is

𝑋 ∼ 𝒩(𝜇, 𝜎2).

The names for the parameters 𝜇 and 𝜎 are coming from the relations:

𝔼(𝑋) = 𝜇,
Var(𝑋) = 𝜎2.
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x

y

y = (x)

1

x

y

y = (x)

(a) Functions 𝜑(𝑥) and Φ(𝑥)

z z z

y

y = (z)

1 (z)( z)

(b) Illustration that Φ(−𝑧) = 1 − Φ(𝑧)

Figure 5.5: Graphs for the standard normal distribution
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Memorize

The simplest case of a normal distribution is known as the standard
normal distribution (or unit normal distribution), and it corresponds
to 𝜇 = 0, 𝜎 = 1. The PDF of 𝑋 ∼ 𝒩(0, 1) has special notation:

𝜑(𝑥) ∶= 1√
2𝜋

𝑒− 𝑥2
2 .

Therefore, if 𝑋 ∼ 𝒩(𝜇, 𝜎2) then

𝑓𝑋(𝑥) = 1
𝜎

𝜑(𝑥 − 𝜇
𝜎

).

Similarly, for 𝑋 ∼ 𝒩(0, 1), the corresponding CDF is denoted

Φ(𝑥) ∶= ∫
𝑥

−∞
𝜑(𝑦) d𝑦 = 1√

2𝜋
∫

𝑥

−∞
𝑒− 𝑦2

2 d𝑦.

This function cannot be expressed in terms of elementary functions.
To deal with it, one can use computer or statistical tables where its
values are given for various values of 𝑥 (it’s called that the function Φ is
tabulated).
It can be shown that if 𝑋 ∼ 𝒩(𝜇, 𝜎2) then the corresponding CDF is

𝐹𝑋(𝑥) = Φ(𝑥 − 𝜇
𝜎

).

There is a standard notation here: 𝑧 = 𝑥−𝜇
𝜎 , hence, we can rewrite

𝐹𝑋(𝑥) = Φ(𝑧), 𝑧 = 𝑥 − 𝜇
𝜎

.

Note that
Φ(−𝑧) = 1 − Φ(𝑧).

Statistical tables usually provide values of the function 1 − Φ(𝑧) for 𝑧 ≥ 0. It
gives immediately answer for Φ(−𝑧) = 1−Φ(𝑧) and for Φ(𝑧) = 1−(1−Φ(𝑧)).
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For example, from the statistical table we can find that

1 − Φ(0.23) = 0.4090.

Then
Φ(−0.23) = 1 − Φ(0.23) = 0.4090,

Φ(0.23) = 1 − (1 − Φ(0.23)) = 1 − 0.4090 = 0.5910.

Example 5.3. Calculate the probability that a randomly selected individual
has a height between 162 cm and 169 cm, given that the population mean
height is 165 cm and the standard deviation is 10 cm, and that the heights
follow the normal distribution.

Solution: Let 𝑋 be the random variable representing the height of an individ-
ual. It is given then that 𝑋 ∼ 𝒩(𝜇, 𝜎2), where 𝜇 = 165, 𝜎 = 10. We need to
find

ℙ(162 ≤ 𝑋 ≤ 173).

First step. We rewrite the required probabiligy in terms of the random
variable

𝑍 = 𝑋 − 𝜇
𝜎

, 𝑍 ∼ N(0, 1).

Namely, we have

ℙ(162 ≤ 𝑋 ≤ 169) = ℙ(162 − 165 ≤ 𝑋 − 165 ≤ 169 − 165)
= ℙ(−3 ≤ 𝑋 − 165 ≤ 4)

= ℙ(− 3
10

≤ 𝑋 − 165
10

≤ 4
10

)

= ℙ(−0.3 ≤ 𝑍 ≤ 0.4)
= Φ(0.4) − Φ(−0.3).
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From the statistical table (see above), we have that

1 − Φ(0.4) = 0.3446, 1 − Φ(0.3) = 0.3821.

Therefore,

Φ(0.4) = 1 − 0.3446 = 0.6554, Φ(−0.3) = 1 − Φ(0.3) = 0.3821,

and hence,

ℙ(162 ≤ 𝑋 ≤ 169) = 0.6554 − 0.3821 = 0.2733.

Surely, we can also use Python:
from scipy.stats import norm
norm.cdf(0.4) - norm.cdf(-0.3)

0.2733331637992768
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6. Law of large numbers and the central limit

theorem

6.1 Joint behaviour of random variables
We discussed with you discrete and continuous random variables. For a
random variable 𝑋, you know now how to calculate some of its character-
istics: expected value 𝔼(𝑋) and variance Var(𝑋). Now we consider how to
characterise a pair of random variables.

Memorize

Let 𝑋, 𝑌 ∶ Ω → ℝ be two random variables. Their joint cumulative
distribution function (joint CDF) is the function 𝐹𝑋,𝑌 ∶ ℝ2 → ℝ
defined by

𝐹𝑋,𝑌(𝑥, 𝑦) = ℙ(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦).

Remark. In some cases, the joint CDF can be calculated manually from the
description of the problem. However, in general, to calculate the joint CDF,
we need to have additional information: joint probaility mass function in
discrete case and joint probability density function in continuous case.

Memorize

Let 𝑋 ∶ Ω → {𝑥1, 𝑥2, …} and 𝑌 ∶ Ω → {𝑦1, 𝑦2, …} be two discrete
random variable with the joint CDF 𝐹𝑋,𝑌. Their joint probability
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mass function (joint PMF) is the function

𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗) = ℙ(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗)

(we can also say that 𝑝𝑋,𝑌(𝑥, 𝑦) = 0 for all other 𝑥 and 𝑦). Then

𝐹𝑋,𝑌(𝑥, 𝑦) = ∑
𝑥𝑖≤𝑥

∑
𝑦𝑗≤𝑦

𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗).

Memorize

Let 𝑋, 𝑌 ∶ Ω → ℝ be two continuous random variable with the joint
CDF 𝐹𝑋,𝑌. Their joint probability density function (joint PDF)
is the function 𝑓𝑋,𝑌 ∶ ℝ2 → ℝ such that

𝐹𝑋,𝑌(𝑥, 𝑦) = ∫
𝑥

−∞
(∫

𝑦

−∞
𝑓𝑋,𝑌(𝑢, 𝑣) d𝑣)d𝑢.

Note that
∫

∞

−∞
(∫

∞

−∞
𝑓𝑋,𝑌(𝑢, 𝑣) d𝑣)d𝑢 = 1.

Example 6.1. If joint PMF (for the discrete case) or joint PDF (for the
continuous case) are not given explicitly, the joint CDF can be usually
calculated only in very special cases, e.g. when one of variable is defined in
terms of another one. For example, consider 𝑋 ∼ 𝑈(0, 1) and 𝑌 = 𝑋2, then
𝐹𝑋,𝑌(𝑥, 𝑦) = 0 if 𝑥 < 0 or 𝑦 < 0, and for 𝑥 ≥ 0, 𝑦 ≥ 0, we have

𝐹𝑋,𝑌(𝑥, 𝑦) = ℙ(𝑋 ≤ 𝑥, 𝑋2 ≤ 𝑦) = ℙ(0 ≤ 𝑋 ≤ 𝑥, 𝑋2 ≤ 𝑦)
= ℙ(0 ≤ 𝑋 ≤ 𝑥, −√𝑦 ≤ 𝑋 ≤ √𝑦)
= ℙ(0 ≤ 𝑋 ≤ min{𝑥, √𝑦})

= {
1, if min{𝑥, 𝑦} ≥ 1,
min{𝑥, √𝑦}, if min{𝑥, 𝑦} < 1.

However, if we just have two random variables, e.g. 𝑋 ∼ 𝑈(0, 1) and 𝑌 =∼
(0, 1), then we can’t calculate 𝐹𝑋,𝑌, unless we explicitly define the function
𝑓𝑋,𝑌.
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Memorize

• In the discrete case: for any 𝑔 ∶ ℝ2 → ℝ,

𝔼(𝑔(𝑋, 𝑌 )) = ∑
𝑖

∑
𝑗

𝑔(𝑥𝑖, 𝑦𝑗)𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗),

in particular,

𝔼(𝑋𝑌 ) = ∑
𝑖

∑
𝑗

𝑥𝑖𝑦𝑗𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗).

• In the continuous case: for any 𝑔 ∶ ℝ2 → ℝ,

𝔼(𝑔(𝑋, 𝑌 )) = ∫
∞

−∞
(∫

∞

−∞
𝑔(𝑥, 𝑦) ⋅ 𝑓𝑋,𝑌(𝑥, 𝑦) d𝑦) d𝑥,

in particular,

𝔼(𝑋 𝑌 ) = ∫
∞

−∞
(∫

∞

−∞
𝑥 ⋅ 𝑦 ⋅ 𝑓𝑋,𝑌(𝑥, 𝑦) d𝑦) d𝑥.

Remember

For the given joint PDF 𝑓𝑋,𝑌 (for the continuous case), we can calculate
PDFs of 𝑋 and 𝑌 (so-called marginal PDFs):

𝑓𝑋(𝑥) = ∫
∞

−∞
𝑓𝑋,𝑌(𝑥, 𝑦) d𝑦,

𝑓𝑌(𝑦) = ∫
∞

−∞
𝑓𝑋,𝑌(𝑥, 𝑦) d𝑥.

Stress that, however, for given 𝑓𝑋 and 𝑓𝑌 one can’t uniquely recover
𝑓𝑋,𝑌.
Similarly, for the discrete case, we can define the marginal PMFs, e.g.

𝑝𝑋(𝑥𝑖) = ∑
𝑗

𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗),

𝑝𝑌(𝑦𝑗) = ∑
𝑖

𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗).

Again, one can’t uniquely recover 𝑝𝑋,𝑌 by the pair of 𝑝𝑋 and 𝑝𝑌.
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Memorize

Recall that two random variables 𝑋 and 𝑌 are independent if, for any
𝑎, 𝑏 ∈ ℝ, the events {𝑋 ≤ 𝑎} and {𝑌 ≤ 𝑏} are independent, i.e. if

ℙ(𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏) = ℙ(𝑋 ≤ 𝑎)ℙ(𝑌 ≤ 𝑏),

i.e. for all 𝑥 and 𝑦,

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦).

We also have then that: in the discrete case,

𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗) = 𝑝𝑋(𝑥𝑖)𝑝𝑌(𝑦𝑗),

and, in the continuous case,

𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦).

Therefore, in both cases, we have that, for independent random variables,

𝔼(𝑋𝑌 ) = 𝔼(𝑋)𝔼(𝑌 ).

Memorize

Let 𝑋 ∶ Ω → ℝ and 𝑌 ∶ Ω → ℝ be two random variables (discrete or
continuous). Covariance cov(𝑋, 𝑌 ) describes the joint variability of
these random variables, and it is defined by

cov(𝑋, 𝑌 ) ∶ = 𝔼((𝑋 − 𝔼(𝑋)) ⋅ (𝑌 − 𝔼(𝑌 )))

= 𝔼(𝑋𝑌 ) − 𝔼(𝑋)𝔼(𝑌 ).

Remember

For any 𝑋, 𝑌 , 𝑉 , 𝑊 ∶ Ω → ℝ, 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ,
• cov(𝑋, 𝑌 ) = cov(𝑌 , 𝑋)
• cov(𝑋, 𝑋) = Var(𝑋) = 𝜎2(𝑋)
• cov(𝑋, 𝑎) = 0
• cov(𝑎𝑋, 𝑏𝑌 ) = 𝑎𝑏 cov(𝑋, 𝑌 )
• cov(𝑋 + 𝑎, 𝑌 + 𝑏) = cov(𝑋, 𝑌 )
• cov(𝑎𝑋 + 𝑏𝑌 , 𝑐𝑉 + 𝑑𝑊) = 𝑎𝑐 cov(𝑋, 𝑉 )
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+ 𝑎𝑑 cov(𝑋, 𝑊) + 𝑏𝑐 cov(𝑌 , 𝑉 ) + 𝑏𝑑 cov(𝑌 , 𝑊)
• Var(𝑎𝑋 + 𝑏𝑌 ) = 𝑎2 Var(𝑋) + 𝑏2 Var(𝑌 ) + 2𝑎𝑏 cov(𝑋, 𝑌 )

Memorize

For any random variables 𝑋, 𝑌 ∶ Ω → ℝ, we define their correlation as
follows

corr(𝑋, 𝑌 ) = cov(𝑋, 𝑌 )
𝜎(𝑋) ⋅ 𝜎(𝑌 )

.

It can be proved that
∣corr(𝑋, 𝑌 )∣ ≤ 1,

i.e.
−1 ≤ corr(𝑋, 𝑌 ) ≤ 1.

Memorize

Two random variables, 𝑋 and 𝑌, are called uncorrelated if their covari-
ance is zero: cov(𝑋, 𝑌 ) = 0 (and, hence, their correlation is also zero:
corr(𝑋, 𝑌 ) = 0).

Remember

For uncorrelated random variables 𝑋 and 𝑌 and for any 𝑎, 𝑏 ∈ ℝ,

Var(𝑎𝑋 + 𝑏𝑌 ) = 𝑎2 Var(𝑋) + 𝑏2 Var(𝑌 ).

Reminder

Recall, that for independent random variables 𝑋 and 𝑌, 𝔼(𝑋𝑌 ) =
𝔼(𝑋)𝔼(𝑌 ), and hence cov(𝑋, 𝑌 ) = 0. Therefore, independent ran-
dom variables are uncorrelated. The opposite statement is wrong
that is shown by the following example.

Example 6.2. Let 𝑋 ∼ 𝑈(−1, 1) and 𝑌 = 𝑋2. Then 𝑋𝑌 = 𝑋3, and hence

cov(𝑋, 𝑌 ) = 𝔼(𝑋𝑌 ) − 𝔼(𝑋)𝔼(𝑌 ) = 𝔼(𝑋3) − 𝔼(𝑋)𝔼(𝑋2).

We know that
𝔼(𝑋) = (−1) + 1

2
= 0.
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Next, since 𝑓𝑋(𝑥) = 1
2 for 𝑥 ∈ (−1, 1) and 𝑓𝑋(𝑥) = 0 otherwise, we have

𝔼(𝑋3) = ∫
∞

−∞
𝑥3𝑓𝑋(𝑥) d𝑥 = 1

2
∫

1

−1
𝑥3𝑑𝑥 = 1

2
⌊𝑥4

4
⌋

1

−1
= 0.

Therefore, cov(𝑋, 𝑌 ) = 0 i.e. 𝑋 and 𝑌 are uncorrelated. However, clearly, 𝑋
and 𝑌 = 𝑋2 are not independent.

6.2 Law of large numbers (LLN)

Remember

Let 𝑋1, … , 𝑋𝑛 ∶ Ω → ℝ be random variables. They are called indepen-
dent if, for any 𝑎1, … , 𝑎𝑛 ∈ ℝ the events {𝑋1 ≤ 𝑎1}, …, {𝑋𝑛 ≤ 𝑎𝑛} are
independent. Or, equivalently, if their joint CDF

𝐹𝑋1,…,𝑋𝑛
(𝑥1, … , 𝑥𝑛) ∶= ℙ(𝑋1 ≤ 𝑥1, … , 𝑋𝑛 ≤ 𝑥𝑛)

is the product of the CDFs for each 𝑋𝑖:

𝐹𝑋1,…,𝑋𝑛
(𝑥1, … , 𝑥𝑛) = 𝐹𝑋1

(𝑥1) … 𝐹𝑋𝑛
(𝑥𝑛).

Memorize

Random variable 𝑋1, 𝑋2, … , 𝑋𝑛, … are called independent and iden-
tically distributed random variables (in brief, i.i.d. r.v.) if any finite
group of them 𝑋1, … , 𝑋𝑛 are independent and they all have the same
distribution: 𝐹𝑋1

= 𝐹𝑋2
= … = 𝐹𝑋𝑛

= … = 𝐹𝑋, where 𝑋 is their joint
distribution; i.e. 𝑋1 ∼ 𝑋, 𝑋2 ∼ 𝑋, ….

Remember

Let 𝑋1, 𝑋2, … , 𝑋𝑛, … be i.i.d. r.v. with 𝔼(𝑋) = 𝜇 and Var(𝑋) = 𝜎2 <
∞. Consider the sample average

𝑋̄𝑛 = 𝑋1 + … + 𝑋𝑛
𝑛

.

Then
𝔼(𝑋̄𝑛) = 𝜇, Var(𝑋̄𝑛) = 𝜎2

𝑛
.
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Law of Large Numbers (LLN)

Let 𝑋1, 𝑋2, … , 𝑋𝑛, … be i.i.d. r.v. with 𝔼(𝑋) = 𝜇 and Var(𝑋) = 𝜎2 <
∞. Then 𝑋̄𝑛 → 𝜇 stochastically (or, it is also called in probability):
namely, for each 𝜀 > 0,

lim
𝑛→∞

ℙ(|𝑋̄𝑛 − 𝜇| > 𝜀) = 0.

Remark. In other words, the bigger 𝑛 you take, the smaller chances are for
the event {|𝑋̄𝑛 − 𝜇| > 𝜀}. Equivalently, one can state that

lim
𝑛→∞

ℙ(|𝑋̄𝑛 − 𝜇| ≤ 𝜀) = 1,

i.e. the bigger 𝑛 you take, the larger chances are for the event |𝑋̄𝑛 − 𝜇| ≤ 𝜀
that is equivalent to 𝜇 − 𝜀 < 𝑋̄𝑛 < 𝜇 + 𝜀. Thus, informally speaking, with
𝑛 growing, there are good chances to find 𝑋̄𝑛 around 𝜇. We can choose 𝜀
arbitrary small, i.e. we can require that 𝑋̄𝑛 must very close to 𝜇, and the law
of large numbers states that there is high probability (close to 1) to achieve
this if we take 𝑛 alrge enough.

Remember

Let 𝐴 be a random event as a result of an experiment; let ℙ(𝐴) = 𝑝.
Consider the Bernoulli random variable 𝑋 with 𝑋 = 1 if 𝐴 holds and
𝑋 = 0 otherwise. Let 𝑋1, … , 𝑋𝑛, … be i.i.d. r.v. with 𝑋𝑛 ∼ 𝑋. Then

𝜇 = 𝔼(𝑋) = 1 ⋅ 𝑝 + 0 ⋅ (1 − 𝑝) = 𝑝.

Next, the sample average 𝑋̄𝑛 = 1
𝑛(𝑋1 + … + 𝑋𝑛) is the number of times

when 𝐴 took place when we repeated the experiment 𝑛 times. (Note
that 𝑋1 + … + 𝑋𝑛 ∼ 𝐵𝑖𝑛(𝑛, 𝑝).) Therefore, 𝑋̄𝑛 is the frequency of the
event 𝐴 took place among 𝑛 trials. Then LLN states that

number of trials when 𝐴 happened
number 𝑛 of all trial

→ ℙ(𝐴)

in a proper sense (as 𝑛 → ∞). This corresponds to our “intuitive”
understanding of the probability.

Example 6.3. Consider many rolls of a fair 6-sides dice. Let 𝑋𝑗 be the score
of the 𝑗-th roll, and 𝑆𝑛 = 𝑋1 + … + 𝑋𝑛 be the sum of the scores in the first
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𝑛 rolls. All 𝑋𝑗 are i.i.d. r.v. with

𝔼(𝑋) = 1 ⋅ 1
6

+ 2 ⋅ 1
6

+ … + 6 ⋅ 1
6

= 7 ⋅ 6
2

⋅ 1
6

= 7
2

.

Therefore, by LLN, for any small 𝜀 > 0,

lim
𝑛→∞

ℙ(∣𝑆𝑛
𝑛

− 7
2

∣ ≤ 𝜀) = 1,

or equivalently,

lim
𝑛→∞

ℙ((7
2

− 𝜀)𝑛 ≤ 𝑆𝑛 ≤ (7
2

+ 𝜀)𝑛) = 1.

6.3 Central limit theorem (CLT)
As we could see, LLN states that, for i.i.d. r.v. 𝑋𝑛 ∼ 𝑋, 𝑛 ≥ 1,

𝑋𝑛 = 𝑋1 + … + 𝑋𝑛
𝑛

→ 𝔼(𝑋)

stochastically (in probability) as 𝑛 → ∞. We have also shown that 𝔼(𝑋𝑛) =
𝔼(𝑋) for each 𝑛, i.e. we can reformulate LLN as follows:

𝑋𝑛 − 𝔼(𝑋𝑛) → 0, 𝑛 → ∞.

Preparation

The Central Limit Theorem (CLT) shows how fast 𝑋𝑛 converges to
𝔼(𝑋). To formulate it, we recall that Var(𝑋𝑛) = 𝜎2(𝑋)

𝑛 . Hence,

𝜎(𝑋𝑛) = 𝜎(𝑋)√
𝑛

.

We define, for 𝜇 ∶= 𝔼(𝑋), 𝜎 ∶= 𝜎(𝑋),

𝑍𝑛 ∶= 𝑋𝑛 − 𝔼(𝑋𝑛)
𝜎(𝑋𝑛)

= 𝑋𝑛 − 𝜇
𝜎√
𝑛

=
√

𝑛
𝜎

(𝑋𝑛 − 𝜇).

Note that
𝔼(𝑍𝑛) = 0, Var(𝑍𝑛) = 1.
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Central Limit Theorem (CLT)

Let 𝑋1, … , 𝑋𝑛, … be i.i.d. r.v. with 𝑋𝑛 ∼ 𝑋, 𝜇 ∶= 𝔼(𝑋), 𝜎2 ∶=
Var𝑋 < ∞. Let 𝑍𝑛 be defined as above. Then

𝑍𝑛 → 𝑍 ∼ 𝒩(0, 1), 𝑛 → ∞,

where the convergence is in distribution; the latter means that

lim
𝑛→∞

ℙ(𝑍𝑛 ≤ 𝑧) = Φ(𝑧), 𝑧 ∈ ℝ,

where Φ(𝑧) = 𝐹𝑍(𝑧) = ℙ(𝑍 ≤ 𝑧). As a corollary,

lim
𝑛→∞

ℙ(𝑎 ≤ 𝑍𝑛 ≤ 𝑏) = Φ(𝑏) − Φ(𝑎), 𝑎, 𝑏 ∈ ℝ,

and
lim

𝑛→∞
ℙ(𝑍𝑛 ≥ 𝑐) = 1 − Φ(𝑐), 𝑐 ∈ ℝ.

Remark. The central limit theorem shows, in particular, that 𝑋𝑛 fluctuates
around its expected value 𝔼(𝑋𝑛) = 𝜇 with the standard deviation 𝜎(𝑋𝑛) =

𝜎√
𝑛 which is significantly less than the standard deviation 𝜎 for each of 𝑋𝑛

around their expected value 𝔼(𝑋𝑛) = 𝜇. And this is tru regardless of the
distribution of 𝑋𝑛. Consider this in an example.

Example 6.4. The average teacher’s salary in New Jersey in 2023 is $63178.
Suppose that the salaries are distributed normallly with standard deviation
$7500. Hence, we have that 𝑋 ∼ 𝒩(63178, 75002).

Lets first find the probability that a randomly selected teacher makes less
than $60000 per year. We have

ℙ(𝑋 < 60000) = ℙ(𝑋 − 63178
7500

< 60000 − 63178
7500

)

= ℙ(𝑍 < −0.42) = Φ(−0.42),

where 𝑍 = 𝑋−63178
7500 ∼ 𝒩(0, 1).

Using statistical tables (and the equality Φ(−0.42) = 1 − Φ(0.42)) or Python
commands
from scipy.stats import norm
norm.cdf(-0.42)
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0.3372427268482495

we conclude that
ℙ(𝑋 < 60000) ≈ 0.337,

i.e. one out of three randomly picked teachers may have the salary less than
$60000.

Consider now a sample of 100 teacher salaries. The sample mean (the average
salary) is then

𝑋100 = 𝑋1 + … + 𝑋100
100

where all 𝑋𝑗 ∼ 𝑋 are i.i.d. r.v. We know that

𝔼(𝑋100) = 𝔼(𝑋) = 63178

and
𝜎(𝑋100) = 𝜎(𝑋)√

100
= 750.

Therefore, the probability that the average salary of any sample of 100 teachers
is less than $60000 per year is

ℙ(𝑋100 < 60000) = ℙ(𝑋100 − 63178
750

< 60000 − 63178
750

)

= ℙ(𝑍100 < −4.2) ≈ Φ(−4.2)

where the latter approximate equality is accroding to CLT. Since
norm.cdf(-4.2)

1.3345749015906314e-05

we have that
ℙ(𝑋100 < 60000) ≈ 0.0000133,

i.e., informally speaking, this is very unlikely.
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7. Hypothesis Testing: 𝑍-tests and 𝑡-tests

This chapter follows chapter 17 of A Basic Course in Statistics by G.M.Clarke
and D.Cooke. Another useful resource is How to Use Statistics by S.Lakin.

In many situations of uncertainty we have to make a choice between two
possible alternatives, for example, given a coin we might ask whether it is fair.
In this section we deal with the problem of finding a method for choosing
between two possible outcomes.

Definition 7.1

A statistical hypothesis is an assertion concerning the probability
distribution of one or more random variables.

For example, if 𝑝 denotes the probability that a coin lands heads when flipped
the hypotheses could be

• 𝑝 = 1
2

• 𝑝 ≠ 1
2 .

When we are faced with two hypotheses we call one of them the null hypothesis
and denote it by 𝐻0 and the other the alternative hypothesis and denote
it by 𝐻1. Therefore in our previous example, the null hypothesis would be
𝐻0 ∶ 𝑝 = 1

2 and the alternative hypothesis would be 𝐻1 ∶ 𝑝 ≠ 1
2 .

The next natural question to ask is how we choose between 𝐻0 and 𝐻1? We
do this by obtaining a random sample from the distribution involved and
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then choosing a statistic, called the test statistic, whose value can be used
to choose between 𝐻0 and 𝐻1.

Therefore for the coin example we might decide not to reject

𝐻0 ∶ 𝑝 = 1
2

if after 10 flips of the coin the test statistic (no. of heads in the sample) lies
between 3 and 7, or to reject 𝐻0 if the test statistic is at most 2 or at least 8.

Definition 7.2

The critical region of a statistical test is the set of values of the test
statistic which lead us to the rejection of the null hypothesis 𝐻0 (at most
2 or at least 8 in the previous example). The acceptance region of the
test is the set of values of the test statistic which lead us to failing to
reject 𝐻0.

Remark 7.3

Some statisticians say that a hypothesis test can have one of two out-
comes: you reject or accept 𝐻0. Other statisticians do not like the phrase
“accept” and prefer to to say either that you reject or fail to reject 𝐻0.

We often specify a value for 𝛼, usually the largest value that we are prepared
to tolerate and then look for a test with this value of 𝛼. The value of 𝛼 is
then called the significance level of the test. If 𝛼 = 0.05, we say that we
are testing 𝐻0 at the “5% level of significance” and, if the test rejects 𝐻0, we
say that the null hypothesis is rejected at the 5% level.

There are two types of significance tests: one-tailed; and two-tailed. We use a
two-tailed test when 𝐻1 is two sided (e.g. 𝐻1 ∶ 𝜇 ≠ 𝜇0). We use a one-tailed
test when 𝐻1 is one-sided (e.g. 𝐻1 ∶ 𝜇 > 𝜇0 or 𝐻1 ∶ 𝜇 < 𝜇0).

An alternative approach to using critical regions is using p-values. Instead of
specifying a critical region and deciding whether or not the test statistic lies
within it, the probability of obtaining a value equal to, or more extreme than
the test statistic is calculated. For a one-tailed test, this probability is called
the 𝑝-value and it is then compared with the significance level probability
𝛼. For a two-tailed test, this probability is called the 𝑝−value

2 and it is then
compared with the significance level probability 𝛼

2 . More on this later.

We cannot be sure of making the correct choice between 𝐻0 and 𝐻1. We can
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make two types of incorrect decision. We can reject 𝐻0 when it is actually
true and we can accept 𝐻0 when it is actually false.

Definition 7.4

A type I error occurs if the null hypothesis 𝐻0 is rejected when it is
true. A Type II error occurs if the null hypothesis 𝐻0 is not rejected
when it is false.

The probability of a type I error is usually denoted by 𝛼 (and type II by 𝛽).

The following steps summarise how we tackle questions of this type:

1. Determine 𝐻0, 𝐻1 and the significance level;

2. Decide whether a one or two-tailed test is appropriate;

3. Calculate the test statistic assuming 𝐻0 is true;

4. Compare the test statistic with the critical value(s) for the critical
region or use the 𝑝-value approach;

5. Reject or do not reject 𝐻0 as appropriate.

We now deal with the different cases.

7.1 The Mean of 𝑛 Observations from 𝑁(𝜇, 𝜎2)
(𝜎2 Known)

A random sample of 𝑛 observations will be collected and a decision will be
made by looking at the whole sample.

𝑋 ∼ 𝑁(𝜇, 𝜎2) then 𝑋 ∼ 𝑁(𝜇, 𝜎2

𝑛 ). Therefore given a null hypothesis which
states that a random sample 𝑥1, … , 𝑥𝑛 has been drawn from 𝑁(𝜇, 𝜎2) we
calculate

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

and test whether it has come from 𝑁(𝜇, 𝜎2

𝑛 ). In this case our test statistic is

𝑧 = ̄𝑥 − 𝜇
𝜎√
𝑛

and we compare with the critical values or use the 𝑝-value approach in the
usual way.
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Example 7.5. A machine produces items having a nominal mass of 1𝑘𝑔. The
mass of a randomly selected item 𝑥 follows the distribution 𝑋 ∼ 𝑁(𝜇, (0.02)2).
If 𝜇 ≠ 1 then the machinery should be corrected. The mean mass of a
randomly sample of 25 items was found to be 0.989𝑘𝑔. Test the null hypothesis
that 𝐻0 ∶ 𝜇 = 1 at the 1% significance level.

We have

• 𝐻0 ∶ 𝜇 = 1

• 𝐻1 ∶ 𝜇 ≠ 1

• 𝛼 = 0.01

Since 𝑃(𝑍 ≤ 2.58) = 0.995 the critical region is |𝑧| > 2.58 and the test
statistic is given by

𝑧 = ̄𝑥 − 𝜇
𝜎√
𝑛

= 0.989 − 1
0.02

5
= −2.75.

2.75 2.58 2.58 x

y

0.99

critical region critical region

Clearly −2.75 is in the critical region, therefore we reject 𝐻0 at the 1%
significance level and conclude that the machine settings should be corrected.
Using the p-value approach we find:
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2.75 2.58 2.58 x

y

0.99
acceptance region

2 = 0.005 2 = 0.005

p value
2 = 0.003

In particular, 𝑃(𝑍 ≥ −2.75) = 0.003 < 0.005(𝛼
2 ) and therefore we reject 𝐻0.

7.2 The Difference between 2 Means from
Normal Distributions with Known Vari-
ances

If two samples are taken at random from normal distributions the first of
size 𝑛1 from 𝑁(𝜇1, 𝜎2

1) and the second of size 𝑛2 from 𝑁(𝜇2, 𝜎2
2) the means

of the sample may be calculated and compared. If the means are ̄𝑥1 and ̄𝑥2
respectively then the difference ( ̄𝑥1 − ̄𝑥2) has the distribution

𝑁(𝜇1 − 𝜇2, 𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

).

The theory then follows in the same way, with the test statistic being given
by

( ̄𝑥1 − ̄𝑥2) − (𝜇1 − 𝜇2)

√𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

.

Example 7.6. A sample of size 25 is taken from 𝑋 ∼ 𝑁(𝜇1, 66) and the
mean ̄𝑥 was found to be 116, then another sample of size 25 is taken from
𝑌 ∼ 𝑁(𝜇2, 66) and ̄𝑦 was found to be 109. Test the following at the 5%
significance level.

• 𝐻0 ∶ 𝜇1 − 𝜇2 = 12
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• 𝐻1 ∶ 𝜇1 − 𝜇2 ≠ 12

Since 𝛼 = 0.05 and we have a two-tailed test then the critical region is
|𝑧| > 1.96. The test statistic is

𝑧 = ̄𝑥 − ̄𝑦 − (𝜇1 − 𝜇2)

√𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

= 7 − 12√
5.28

= −2.17.

Since −2.17 < −1.96 then −2.17 is in the critical region and we reject the
null hypothesis and conclude that the difference between the means is not 12
at the 5% significance level.

7.3 Large Sample Tests
The central limit theorem can be used to do significance tests for non-normal
distributions when the sample sizes are large enough (30 or more). When
a normal approximation can be used, its mean and variance will be 𝜇 and
𝜎2

𝑛 respectively. In this way we can test hypotheses about the means of
distributions which are not themselves normal, provided a large sample of
observations is available. We will the same methods to test hypotheses as
before except that the test statistic will be only approximately 𝑁(0, 1).

Example 7.7. The number of strokes a golfer takes to complete a round of
golf has mean 84.1 and standard deviation 2.6. After lessons her mean is 83.1
in 36 subsequent rounds. At the 5% significance level test the null hypothesis
that her standard of play is unaltered against the alternative hypothesis that
it has improved, i.e.

• 𝐻0 ∶ 𝜇 = 84.1

• 𝐻1 ∶ 𝜇 < 84.1 (one-tailed)

• 𝛼 = 0.05 therefore the critical region is 𝑧 < −1.645

We approximate the distribution of strokes by 𝑁(𝜇, 2.62

36 ) and the test statistic
is given by

𝑧 = ̄𝑥 − 𝜇
𝜎√
𝑛

= 83.1 − 84.1
2.6
6

= −2.31.

This lies in the critical region therefore we reject the null hypothesis and
conclude that her game seems to have improved.
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2.31 1.645 x

y

0.95
acceptance region

critical region

0.05

Alternatively, using the 𝑝-value approach we find 𝑃(𝑍 ≤ −2.31) = 0.01044 <
0.05 and therefore we reject the null hypothesis.

2.31 1.645 x

y

0.95
acceptance region

critical region

p value = 0.01044

Definition 7.8

If 𝑥1, … , 𝑥𝑛 is a family random variables of size 𝑛 ≥ 2 from the distribu-
tion 𝑋 ∼ 𝑁(𝜇, 𝜎2), the random variable

𝑇 = ̄𝑥 − 𝜇
𝑠√
𝑛

is said to have a 𝑡 distribution with (𝑛 − 1) degrees of freedom.

As mentioned in the definition above, for the 𝑡 distribution we require the
degrees of freedom, this is 𝑛 minus the number of samples ((𝑛 − 1) above due

79



MA-M27 Probability and Statistics for Data Science Lecture Notes

to the single sample).

The degrees of freedom come from the number of values that are free to vary.
Let us suppose we have 4 numbers (𝑎, 𝑏, 𝑐, 𝑑) and we know that the mean of
these is 5. This means that

𝑎 + 𝑏 + 𝑐 + 𝑑 = 20(4 × 5).

Note that once we know 3 of the numbers above, then we can calculate the
fourth and therefore only 3 of them are “free”. In this case we would have
3 = 4 − 1 = 𝑛 − 1 degrees of freedom.

Note that as 𝑛 → ∞, the 𝑡 distribution tends to the normal distribution. The
𝑡 distribution has heavier tails than the normal distribution meaning that it
is more likely to have values that fall further away from the mean.

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 y = fZ(x), Z (0, 1)
y = fX(x), X t1
y = fX(x), X t4
y = fX(x), X t7

t-tests
In the real world we often only have a random sample of data values with
limited information about the underlying probability distribution. (Note that
in the cases above the variance of the distribution is known.) The next
natural question to ask is whether we can still perform hypothesis tests in
these scenarios? Fortunately we can and we make use of the 𝑡 distribution.
𝑡-tests may be performed on continuous data, possibly within an interval, for
example, exam results as a percentage. We may also use 𝑡-tests on data which
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have 7 or more ordered categories. An example of such a data set could be
the outcome of questions which have answers on the following 7 point Likert
scale:

• Strongly Agree

• Agree

• Agree Somewhat

• Undecided

• Disagree Somewhat

• Disagree

• Strongly Disagree

7.4 t-test: Comparing a Sample Mean
Suppose that 𝑋 ∼ 𝑁(𝜇, 𝜎2) where 𝜎2 is unknown and we wish to test the
null hypothesis 𝐻0 ∶ 𝜇 = 𝜇0 against some alternative hypothesis. In this case
we take a sample and we estimate 𝜎2 by the sample variance 𝑠2, but the error
in doing so, in particular when 𝑛 is small, cannot be neglected and therefore
we must use the test statistic

𝑡 = ̄𝑥 − 𝜇0
𝑠√
𝑛

which has a 𝑡 distribution with 𝑛 − 1 degrees of freedom. The rest of the
theory is similar to what we have seen with the normal distribution only that
we use the 𝑡 distribution to calculate the critical region.

Example 7.9. Yarn breaking strength follows a normal distribution with
mean of 21𝑁. It is claimed that if the yarn is treated with a chemical then
the mean breaking strength increases. A random sample of 9 lengths are
taken, the value of the sample mean and sample standard deviation are 22.75
and 2.109 respectively. Test the following:

• 𝐻0 ∶ 𝜇 = 21

• 𝐻1 ∶ 𝜇 > 21 (one-tailed)

• 𝛼 = 0.05

81



MA-M27 Probability and Statistics for Data Science Lecture Notes

The critical region is obtained by the 𝑡 distribution:

𝑡 > 𝑡0.05,8 ⟹ 𝑡 > 1.860.

The test statistic is given by

𝑡 = 22.75 − 21
2.109√

9
= 2.5.

This value is clearly in the critical region therefore we reject the null hypothesis
and accept the claim at the 5% significance level. Note that 𝑝-values can also
be used to reject the null hypothesis or not - this will be seen in the lab class.

7.5 Paired t-test
Many statistical applications use paired data samples to draw conclusions
about the difference between two population means. Data pairs occur very
naturally in “before” and “after” situations, where the same object or item
is measured before and after a treatment. Such data pairs are very common
in science and business. Clearly in this situation the sample sizes will be
equal. Assume we have 𝑛 pairs and let 𝑋1 and 𝑋2 be the random variables
that denote the observations made on the 𝑛 pairs (the “before” and “after”)
with means 𝜇1 and 𝜇2 respectively. The idea is to consider the difference
𝐷 = 𝑋1 − 𝑋2, assumed to be a normally distributed random variable, with
mean 𝜇1 − 𝜇2 and the null hypothesis may be that 𝜇1 and 𝜇2 differ by a
stated amount, say 𝜇0 (𝜇0 is often 0, i.e. the means do not differ). The test
statistic we use in this scenario is

𝑡 = 𝐷̄ − 𝜇0
𝑠𝐷√

𝑛

where 𝑠𝐷 is the sample standard deviation of 𝐷 and 𝑡 has a 𝑡 distribution
with 𝑛 − 1 degrees of freedom.

Example 7.10. Ten joints of meat are cut in half; one half is frozen and
wrapped by process A and the other is frozen and wrapped by a new process
B. The halves are placed in ten freezers with halves of the same joint being
put in the same freezer. The number of days to spoilage are found to be:
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Joint
number 1 2 3 4 5 6 7 8 9 10

Process A 63 109 82 156 161 155 47 141 92 149
Process B 129 105 76 207 253 146 62 160 90 177

Assuming the differences between these number-pairs to be normally dis-
tributed, test:

• 𝐻0 ∶ 𝜇𝐷 = 𝜇𝐵 − 𝜇𝐴 = 0

• 𝐻0 ∶ 𝜇𝐷 = 𝜇𝐵 − 𝜇𝐴 ≠ 0 (two-tailed)

• 𝛼 = 0.05

The sample mean and variances of the two processes are given by:

̄𝑥𝐴 = 115.5, ̄𝑥𝐵 = 140.5, 𝑠2
𝐴 = 1800.94, 𝑠2

𝐵 = 3676.28.

We first need to calculate the difference of the days to spoilage 𝐷

Pair
number 1 2 3 4 5 6 7 8 9 10

To-
tal Mean

𝐷 66 −4 −6 51 92 −9 15 19 −2 28 250 25
𝐷 − 𝐷 41 −29 −31 26 67 −34 −10 −6 −27 3 0
(𝐷 − 𝐷)2 1681 841 961 676 4489 1156 100 36 729 9 10678

Then
𝑠2

𝐷 = 1
9

∑
all pairs

(𝐷 − 𝐷)2 = 10678
9

= 1186.44.

The test statistic is then given by

𝑡 = 25 − 0

√1186.44
10

= 2.3.

The critical region is given by

|𝑡| > 𝑡0.025,9 ⟹ |𝑡| > 2.26.

Clearly our test statistic is in the critical region and we therefore reject 𝐻0 and
conclude that there is evidence that there is a difference in the effectiveness
of the two processes.
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7.6 Unpaired t-test
It is quite common to have data from two independent samples, for example
not trying both drugs on every person in the sample, but trying one drug on
some people in the sample and trying another drug on the rest. This would be
an example of a situation where we might use an unpaired t-test. Assume that
we have two samples chosen at random from normal distributions, the first of
size 𝑛1 from 𝑋1 ∼ 𝑁(𝜇1, 𝜎2) and the second of size 𝑛2 from 𝑋2 ∼ 𝑁(𝜇2, 𝜎2).
Note that both distributions have the same variance (albeit unknown) - this
is important for this test. We estimate 𝜎2 from the samples. We consider
the difference between the sample means 𝑥1 − 𝑥2 with the null hypothesis
that 𝜇1 − 𝜇2 = 𝜇0. The test statistic depends on the sample variances and
this depends on whether the sample sizes are equal or not, i.e. 𝑛1 = 𝑛2 or
𝑛1 ≠ 𝑛2.

If 𝑛1 = 𝑛2 then 𝑠2 = 𝑠2
1+𝑠2

2
2 . If 𝑛1 ≠ 𝑛2 then

𝑠2 = (𝑛1 − 1)𝑠2
1 + (𝑛2 − 1)𝑠2

2
(𝑛1 − 1) + (𝑛2 − 1)

.

These are often called the pooled estimates of the variance 𝜎2. Clearly, if
the sample sizes are not equal then we must give greater weight to the larger
sample; the appropriate weights are the degrees of freedom corresponding to
each estimate of the variance. The test statistic is given by

𝑡 = ( ̄𝑥1 − ̄𝑥2) − (𝜇1 − 𝜇2)

𝑠√( 1
𝑛1

+ 1
𝑛2

)

with 𝑛1 + 𝑛2 − 2 degrees of freedom. (This comes from (𝑛1 − 1) + (𝑛2 − 1) =
𝑛1 + 𝑛2 − 2.)

Example 7.11. A trial takes place in which eight people are given only
water, whereas another group of eight people are given a new energy drink.
They then have to take part in an endurance task. The results of the trial
are given in the following table.

Mean Standard deviation

Water (𝑥1) 12.2 2.4
Energy drink (𝑥2) 13.1 3.1

Note that these samples are independent; water and energy drinks are given
to two different groups of people. Assuming the relevant assumptions hold,
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use an unpaired t-test to decide whether people who have taken the energy
drink perform better at the 5% significance level, i.e.

• 𝐻0 ∶ 𝜇1 − 𝜇2 = 0

• 𝐻1 ∶ 𝜇1 − 𝜇2 < 0 or 𝜇1 < 𝜇2 (Mean of “water” less than mean of
“energy drink”)

Since both samples are of the same size, the pooled estimate of the standard
deviation is given by

𝑠 = √2.42 + 3.12

2
= 2.7722,

and the test statistic is given by

𝑡 = (12.2 − 13.1) − 0

2.7722√2
8

= −0.6493,

with 𝑛1 + 𝑛2 − 2 = 14 degrees of freedom. The critical region is given by

𝑡 < −𝑡0.05,14 ⟹ 𝑡 < −1.761.

Since −0.6493 > −1.761 we do not reject the null hypothesis and conclude
there is no evidence that the energy drink makes people perform better.
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8. Maximum likelihood estimation

Memorize

Let 𝑋 be a discrete random variable whose distribution depends on a
parameter 𝜃 ∈ ℝ. Suppose that we observe the data 𝑥1, … , 𝑥𝑛 which is
the output of this random variable 𝑋 in course of 𝑛 independent trials.
In other words, we can say that we observe that i.i.d.r.v. 𝑋1, … , 𝑋𝑛
with 𝑋𝑖 ∼ 𝑋, 1 ≤ 𝑖 ≤ 𝑛, take certain values: 𝑋1 = 𝑥1, … , 𝑋𝑛 =
𝑥𝑛. The likelihood, or likelihood function, is the function ℒ(𝜃) =
ℒ(𝜃 ∣ 𝑥1, … , 𝑥𝑛) of the unknown parameter 𝜃 (given the observed data
𝑥1, … , 𝑥𝑛) which is equal to the probability to observe this data (given
the value of the parameter 𝜃):

ℒ(𝜃) = ℒ(𝜃 ∣ 𝑥1, … , 𝑥𝑛)
∶ = ℙ(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 ∣ 𝜃)
= ℙ(𝑋1 = 𝑥1 ∣ 𝜃) … ℙ(𝑋𝑛 = 𝑥𝑛 ∣ 𝜃).

Memorize

The maximum likelihood estimator 𝜃∗ of the parameter 𝜃 is the argument
of the maximum of the likelihppd function:

𝜃∗ = argmax
𝜃

ℒ(𝜃),
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that means that
ℒ(𝜃∗) = max

𝜃
ℒ(𝜃).

Remember

The standard approach to find 𝜃∗ is to consider the **log-likelihood*
function

𝐿(𝜃) ∶ = 𝐿(𝜃 ∣ 𝑥1, … , 𝑥𝑛) = lnℒ(𝜃 ∣ 𝑥1, … , 𝑥𝑛)
= lnℙ(𝑋1 = 𝑥1 ∣ 𝜃) + … + lnℙ(𝑋𝑛 = 𝑥𝑛 ∣ 𝜃).

Then 𝜃∗ is the point of maximum for both ℒ and 𝐿:

𝜃∗ = argmax
𝜃

𝐿(𝜃) = argmax
𝜃

ℒ(𝜃).

Remark. The reason for this is the fact that the logarigthm 𝑦 = ln𝑥 is an
increasing function, and then

ℒ(𝜃) ≤ ℒ(𝜃∗) ⟺ 𝐿(𝜃) ≤ 𝐿(𝜃∗).

Reminder

To check that 𝜃∗ is the point of maximum of 𝐿(𝜃), it is enough to check
that

𝐿′(𝜃∗) = 0 and 𝐿″(𝜃∗) < 0.

Example 8.1. Let 𝑋 ∶ Ω → {0, 1} be a Bernouilli random variable with
ℙ(𝑋 = 1) = 𝜃 and ℙ(𝑋 = 0) = 1−𝜃, where 𝜃 ∈ [0, 1] is a parameter. Suppose
that we are given a sample of the length 𝑛 of values of 𝑋 which contain 𝑘 ones
and 𝑛 − 𝑘 zeros (the sample has a particular order, e.g. 010010111001 …).
Then the probability to get this particular sample, for any 𝜃 ∈ [0, 1], is
𝜃𝑘(1 − 𝜃)𝑛−𝑘, i.e. the likelihood function for the given data is

ℒ(𝜃) = 𝜃𝑘(1 − 𝜃)𝑛−𝑘.

Hence, the log-likehood fgunction for the given data is

𝐿(𝜃) = lnℒ(𝜃) = ln(𝜃𝑘(1 − 𝜃)𝑛−𝑘)
= ln 𝜃𝑘 + ln(1 − 𝜃)𝑛−𝑘

= 𝑘 ln 𝜃 + (𝑛 − 𝑘) ln(1 − 𝜃).

87



MA-M27 Probability and Statistics for Data Science Lecture Notes

Then
𝐿′(𝜃) = (𝑘 ln 𝜃 + (𝑛 − 𝑘) ln(1 − 𝜃))′

= 𝑘
𝜃

− 𝑛 − 𝑘
1 − 𝜃

= 𝑘(1 − 𝜃) − (𝑛 − 𝑘)𝜃
𝜃(1 − 𝜃)

= 𝑘 − 𝑛𝜃
𝜃(1 − 𝜃)

.

Therefore, 𝐿′(𝜃) = 0 iff 𝑘 − 𝑛𝜃 = 0, i.e.

𝜃 = 𝑘
𝑛

.

Moreover,

𝐿″(𝜃) = (𝐿′(𝜃))′ = (𝑘
𝜃

− 𝑛 − 𝑘
1 − 𝜃

)
′

= − 𝑘
𝜃2 − 𝑛 − 𝑘

(1 − 𝜃)2 < 0

for all 𝜃 ∈ [0, 1], in particular, for 𝜃∗ = 𝑘
𝑛

∈ [0, 1] (as 0 ≤ 𝑘 ≤ 𝑛). Therefore,

𝜃∗ = 𝑘
𝑛

is the point of maximum of 𝐿(𝜃), and hence, it is the maximum
likelihood estimator for the parameter 𝜃.

Remark. Note that 𝑆𝑛 ∶= 𝑋1 + … + 𝑋𝑛 ∼ 𝐵𝑖𝑛(𝑛, 𝜃) is the binomial random
variable, and 𝑘 ones in 𝑛 Bernoulli trials means 𝑆𝑛 = 𝑘. Then the sample
𝑋𝑛 = 1

𝑛(𝑋1 + … + 𝑋𝑛) = 𝑆𝑛/𝑛 takes the value 𝑘
𝑛 . We have that

𝔼(𝑋) = 1 ⋅ 𝜃 + 0 ⋅ (1 − 𝜃) = 𝜃,

and the law of large numbers says that (in certain sense)

𝑋𝑛 → 𝜃, 𝑛 → ∞.

In other words, the maximum likelihood estimator converges to the theoretical
value is the size of the sample converges to infinity.

Example 8.2. Let 𝑋 ∼ 𝑃𝑜(𝜆), i.e.

ℙ(𝑋 = 𝑘) = 𝜆𝑘

𝑘!
𝑒−𝜆, 𝑘 ≥ 0.
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Suppose we have a sample of 𝑛 values of 𝑋: 𝑘1, … , 𝑘𝑛. Then

ℒ(𝜆) = ℙ(𝑋 = 𝑘1 ∣ 𝜆) … ℙ(𝑋 = 𝑘𝑛 ∣ 𝜆)

= 𝜆𝑘1

𝑘1!
𝑒−𝜆 ⋅ … ⋅ 𝜆𝑘𝑛

𝑘𝑛!
𝑒−𝜆

= 1
𝑘1! … 𝑘𝑛!⏟

=∶𝑐>0

𝜆𝑘1+…+𝑘𝑛𝑒−𝜆𝑛,

and therefore,
𝐿(𝜆) = lnℒ(𝜆)

= ln 𝑐 + (𝑘1 + … + 𝑘𝑛) ln𝜆 − 𝜆𝑛.
Then

𝐿′(𝜆) = 𝑘1 + … + 𝑘𝑛
𝜆

− 𝑛,

and hence, 𝐿′(𝜆) = 0 iff
𝜆 = 𝑘1 + … + 𝑘𝑛

𝑛
.

Since
𝐿″(𝜆) = (𝐿′(𝜆))′ = −𝑘1 + … + 𝑘𝑛

𝜆2 < 0,

the found value 𝜆∗ = 𝑘1+…+𝑘𝑛
𝑛 is the point of maximum of 𝐿, hence, it is the

maximum likelihood estimator for the parameter 𝜆.
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9. Time series

Time series is an infinite sequence of random numbers parametrized (indexed)
by (discrete) time:

𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛, … ∈ ℝ.

In real data, the values 𝑋1, 𝑋2, … are not independent.

Memorize

A time series {𝑋𝑛} is called (weakly) stationary if the following
conditions hold:

1) 𝔼(𝑋𝑛) does not depend on 𝑛 (i.e. is a constant in 𝑛)
2) 𝔼(𝑋2

𝑛) < ∞ for all 𝑛
3) cov(𝑋𝑛, 𝑋𝑛+𝑚) = 𝔼(𝑋𝑛𝑋𝑛+𝑚) − 𝔼(𝑋𝑛) ⋅ 𝔼(𝑋𝑛+𝑚) does not

depend on 𝑛, it depends on 𝑚 only.

Remember

In other words, for stationary time series, cov(𝑋𝑛, 𝑋𝑘) depend only on
the time-lag 𝑘 − 𝑛.

Example 9.1. Let 𝑌 and 𝑍 be two uncorrelated identically distributed random
variables with zero mean and variance 𝜎2; i.e. cov(𝑌 , 𝑍) = 0, 𝔼(𝑌 ) = 𝔼(𝑍) =
0, Var(𝑌 ) = Var(𝑍) = 𝜎2.

Let 𝜆 ∈ [0, 2𝜋] be a fixed number, and define

𝑋𝑛 = 𝑌 cos(𝜆𝑛) + 𝑍 sin(𝜆𝑛).
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Then
𝔼(𝑋𝑛) = cos(𝜆𝑛)𝔼(𝑌 ) + sin(𝜆𝑛)𝔼(𝑍) = 0,

hence,
𝜎2 = Var(𝑌 ) = 𝔼(𝑌 2) − (𝔼(𝑌 ))2 = 𝔼(𝑌 2),

and
0 = cov(𝑌 , 𝑍) = 𝔼(𝑌 𝑍) − 𝔼(𝑌 )𝔼(𝑍) = 𝔼(𝑌 𝑍).

Then

𝔼(𝑋2
𝑛) = cos2(𝜆𝑛)𝔼(𝑌 2)+sin2(𝜆𝑛)𝔼(𝑍2)+2 cos(𝜆𝑛) sin(𝜆𝑛)𝔼(𝑌 𝑍) = 𝜎2 < ∞

and

cov(𝑋𝑛, 𝑋𝑛+𝑚) = 𝔼(𝑋𝑛𝑋𝑛+𝑚)
= cos(𝜆𝑛) cos(𝜆(𝑛 + 𝑚))𝔼(𝑌 2) + sin(𝜆𝑛) sin(𝜆(𝑛 + 𝑚))𝔼(𝑍2)

+ 2 cos(𝜆𝑛) sin(𝜆(𝑛 + 𝑚))𝔼(𝑌 𝑍)
= 𝜎2 cos(𝜆(𝑛 + 𝑚) − 𝜆𝑛)
= 𝜎2 cos(𝜆𝑚),

hence, {𝑋𝑛} is stationary.

Remember

If {𝑋𝑛} is stationary, then

Var(𝑋𝑛) = cov(𝑋𝑛, 𝑋𝑛)

does not depend on 𝑛.

Memorize

A time series {𝑍𝑛} is called a white noise if
1) 𝔼(𝑍𝑛) = 0
2) for some 𝜎 > 0,

cov(𝑍𝑛, 𝑍𝑛+𝑚) = {
𝜎2, if 𝑚 = 0,
0, if 𝑚 ≠ 0.

I.e. a white noise has zero mean and uncorrelated values.
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Remember

The standard example of white noise is a colelction of i.i.d.r.v. 𝑍𝑛 ∼
𝒩(0, 𝜎2).

9.1 Autoregressive model 𝐴𝑅(1)
We consider a time series {𝑋𝑛} which satisfies

𝑋𝑛 = 𝜇 + 𝛼(𝑋𝑛−1 − 𝜇) + 𝑍𝑛,

whre 𝜇 ∈ ℝ is a constant, {𝑍𝑛} is a white noise, and 𝛼 ∈ ℝ is a parameter.
We will always assume that {𝑍𝑛} is independent from {𝑋𝑛}. We
denote 𝑌𝑛 = 𝑋𝑛 − 𝜇, then

𝑌𝑛 = 𝛼𝑌𝑛−1 + 𝑍𝑛.

We are going to find conditions to have 𝑋𝑛 stationary. In particular, one
needs that 𝔼(𝑋𝑛) and Var(𝑋𝑛) are constants.

Since 𝔼(𝑌𝑛) = 𝔼(𝑋𝑛 − 𝜇) = 𝔼(𝑋𝑛) − 𝜇 and Var(𝑌𝑛) = Var(𝑋𝑛 − 𝜇) =
Var(𝑋𝑛), we must then have both 𝔼(𝑌𝑛) =∶ 𝑘 and Var(𝑌𝑛) =∶ 𝑣 constants.
We can write

𝔼(𝑌𝑛) = 𝔼(𝛼𝑌𝑛−1 + 𝑍𝑛) = 𝛼𝔼(𝑌𝑛−1) + 𝔼(𝑍𝑛),

i.e. 𝑘 = 𝛼𝑘 + 0, and hence, either 𝛼 = 1 or 𝑘 = 0. Next, since Z_n is
independent from {𝑋𝑛} (and hence, from {𝑌𝑛}), we get

Var(𝑌𝑛) = Var(𝛼𝑌𝑛−1 + 𝑍𝑛) = 𝛼2 Var(𝑌𝑛−1) + Var(𝑍𝑛),

i.e.
𝑣(1 − 𝛼2) = 𝜎2.

If 1 − 𝛼2 = 0, i.e. 𝛼 = ±1, then 𝜎 = 0, that is impossible. Hence 𝛼 ≠ ±1
(and thus, 𝔼(𝑋𝑛) = 0 for all 𝑛). Moreover, for 𝛼 ≠ ±1, we have

Var(𝑋𝑛) = 𝑣 = 𝜎2

1 − 𝛼2 .

Since Var(𝑋𝑛) ≥ 0, we require 1 − 𝛼2 > 0, i.e.

|𝛼| < 1 ⟺ −1 < 𝛼 < 1.
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Memorize

It possible to prove that, indeed, the condition |𝛼| < 1 is necessary
and sufficient for the stationarity of the time series {𝑋𝑛} given by
𝑋𝑛 = 𝛼𝑋𝑛−1 + 𝑍𝑛. For the next classes of time series, however, it
is more useful to rewrite this condition in term of the characteristic
equation: for 𝐴𝑅(1)

𝑋𝑛 = 𝛼𝑋𝑛−1 + 𝑍𝑛

we consider the equation
1 − 𝛼𝜆 = 0.

The time series is staionary if and only if |𝜆|>1 (note that here 𝜆 = 1
𝛼
).
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n 1e6

1000

800
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400
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X n

Time series Xn = Xn 1 + Zn

= 0.999
= 1

Figure 9.1: Qualitative difference between stationary (blue colour) and non-
stationary (red colour) time series behaviour
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9.2 Autoregressive model 𝐴𝑅(2)
Consider the model

𝑋𝑛 = 𝜇 + 𝛼1(𝑋𝑛−1 − 𝜇) + 𝛼2(𝑋𝑛−2 − 𝜇) + 𝑍𝑛 (9.1)

Memorize

The characteristic equation of (9.1) is

1 − 𝛼1𝜆 − 𝛼2𝜆2 = 0.

This equation has two roots (they are, possibly, complex numbers):
𝜆1, 𝜆2. The time series (9.1) is stationary if and only if

|𝜆1| > 1 **and** |𝜆2| > 1.

Reminder

• A quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 with 𝑎 ≠ 0 has two roots

𝑥1 = −𝑏 −
√

𝐷
2𝑎

, 𝑥2 = −𝑏 +
√

𝐷
2𝑎

,

where the discriminant 𝐷 is given by

𝐷 = 𝑏2 − 4𝑎𝑐.

If 𝐷 ≤ 0 the roots are real numbers (and they are equal if 𝐷 = 0.
If 𝐷 < 0 the roots are complex numbers: 𝑥1,2 = 𝑝 ± 𝑞𝑖, where
𝑖2 = −1.

• Two complex numbers 𝑝 + 𝑞𝑖 and 𝑝 − 𝑞𝑖 has the same absolute
value:

|𝑝 ± 𝑞𝑖| = √𝑝2 + 𝑞2.

Example 9.2. Consider the time series

𝑋𝑛 = 1
12

𝑋𝑛−1 + 1
2

𝑋𝑛−2 + 𝑍𝑛,

where {𝑍𝑛} is a white noise. Is {𝑋𝑛} stationary?
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Solution: Consoder the characteristic equation

1 = 1
12

𝜆 + 1
2

𝜆2,

𝜆2 + 1
6

𝜆 − 2 = 0,

𝐷 = (1
6

)
2

− 4 ⋅ (−2) = 1
36

+ 8 = 289
36

,
√

𝐷 = 17
6

,

𝜆1 =
−1

6
− 17

6
2

= −18
12

= −3
2

,

𝜆2 =
−1

6
+ 17

6
2

= 16
12

= 4
3

.

Since |𝜆1| = 3
2 > 1 and |𝜆2| = 4

3 > 1, the time series {𝑋𝑛} is stationary.

Example 9.3. Consider the time series

𝑋𝑛 = 1
3

𝑋𝑛−1 + 2
3

𝑋𝑛−2 + 𝑍𝑛,

where {𝑍𝑛} is a white noise. Is {𝑋𝑛} stationary?

Solution: Consider the characteristic equation

1 = 1
3

𝜆 + 2
3

𝜆2, 2𝜆2 + 𝜆 − 3 = 0,

𝐷 = 12 − 4 ⋅ 2 ⋅ (−3) = 25,

𝜆1 = −1 − 5
2 ⋅ 2

= −6
4

= −3
2

,

𝜆2 = −1 + 5
2 ⋅ 2

= 4
4

= 1.

Here |𝜆1| = 3
2 > 1, however, |𝜆2| = 1; hence, the time series {𝑋𝑛} is

non-stationary.

9.3 Autoregressive model 𝐴𝑅(𝑝)
We consider a generalisation of the previous models:

𝑋𝑛 = 𝜇 + 𝛼1(𝑋𝑛−1 − 𝜇) + … + 𝛼𝑝(𝑋𝑛−𝑝 − 𝜇) + 𝑍𝑛 (9.2)
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Remember

The characteristic equation of (9.2) is

1 − 𝛼1𝜆 − … − 𝛼𝑝𝜆𝑝 = 0.

This equation has 𝑝 roots (if 𝛼𝑝 ≠ 0): 𝜆1, … , 𝜆𝑝 (possibly, complex).
The time series (9.2) is stationary iff

|𝜆1| > 1, … , |𝜆𝑝| > 1.

Remark. The roots of the characteristic equation may be found numerically,
using e.g. Python.

9.4 𝐴𝑅𝑀𝐴(𝑝, 𝑞)-model
Here “AR” stands for “autoregressive” and “MA” stands for “moving average”:
this model includes past white noise, namely:

𝑋𝑛 = 𝜇 + 𝛼1(𝑋𝑛−1 − 𝜇) + … + 𝛼𝑝(𝑋𝑛−𝑝 − 𝜇)
+ 𝑍𝑛 + 𝛽1𝑍𝑛−1 + … + 𝛽𝑞𝑍𝑛−𝑞.

Remember

The characteristic equation and the coinditions for stationarity for
𝐴𝑅𝑀𝐴(𝑝, 𝑞) coincide with such for its 𝐴𝑅(𝑝) component.
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10. Data Reduction

A useful resource for this chapter is Using Multivariate Statistics by
B.G.Tabachnick and L.S.Fidell. The material taught in this chapter will be
met from a machine learning perspective in MA-M28 Modelling and Machine
Learning — please see chapter 4 of Essential Math for Data Science if you
would like an insight into this.

Factor Analysis (FA) and Principal Component Analysis (PCA) are statistical
techniques applied to a (large) set of variables to try to reduce them into
subsets of relatively independent variables. Such subsets contain variables
that are correlated with one another, but largely independent of other subsets
of variables and are combined into factors (or components in PCA).

Therefore, the idea of FA and PCA is to summarise patterns of correlations
among observed variables and then to use this information to reduce a large
number of observed variables to a smaller number of factors. A good FA or
PCA makes sense, a bad one does not, therefore a good understanding of the
data is required.

10.1 (Exploratory) Factor Analysis
In Factor Analysis, the subsets of variables are unobservable latent variables
— we cannot measure them directly. Examples of such variables could be
intelligence or social class. We could try to measure such concepts indirectly,
for example by measuring occupation, salary and value of home for social
class.
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Mathematically, the technique involves representing the original variables as a
linear combination of the “hidden” factors and an error term. If 𝑌1, 𝑌2, … , 𝑌𝑛
represent the 𝑛 observed variables with means 𝜇1, … , 𝜇𝑛, and 𝐹1, … , 𝐹𝑚
represent the “hidden” 𝑚 factors, then we may consider the centralised
observations 𝑋𝑖 = 𝑌𝑖 − 𝜇𝑖 as follows:

𝑋1 = 𝑌1 − 𝜇1 = 𝑎11𝐹1 + 𝑎12𝐹2 + ⋯ + 𝑎1𝑚𝐹𝑚 + 𝜖1

𝑋2 = 𝑌2 − 𝜇2 = 𝑎21𝐹1 + 𝑎22𝐹2 + ⋯ + 𝑎2𝑚𝐹𝑚 + 𝜖2

⋮ ⋮ ⋮
𝑋𝑛 = 𝑌𝑛 − 𝜇𝑛 = 𝑎𝑛1𝐹1 + 𝑎𝑛2𝐹2 + ⋯ + 𝑎𝑛𝑚𝐹𝑚 + 𝜖𝑛,

(10.1)

where 𝑎𝑖𝑗 represents the factor loading of the 𝑖th variable on the 𝑗th factor
and 𝜖𝑖 represents the error or unique specific factor. We assume that 𝜖𝑖 has 0
mean and specific variance 𝜓𝑖. In matrix notation, this can be represented as,

𝑋 = 𝐴𝐹 + 𝜖. (10.2)

Consider the following illustrative example.

Example 10.1. In an experiment, 200 primary school children were psy-
chologically tested. The children were tested on the following (the observed
variables):

• Paragraph comprehension (𝑋1);

• Sentence completion (𝑋2);

• Word meaning (𝑋3);

• Addition (𝑋4);

• Counting (𝑋5).

A factor analysis gives the following linear combinations:

𝑋1 = 0.81𝐹1 + 0.06𝐹2 + 𝜖1

𝑋2 = 0.72𝐹1 + 0.08𝐹2 + 𝜖2

𝑋3 = 0.91𝐹1 + 0.01𝐹2 + 𝜖3

𝑋4 = 0.02𝐹1 + 0.69𝐹2 + 𝜖4

𝑋5 = 0.11𝐹1 + 0.92𝐹2 + 𝜖5

Clearly, variables 𝑋1, 𝑋2 and 𝑋3 have a high factor loading with 𝐹1 and a
low factor loading with 𝐹2. Variables 𝑋4 and 𝑋5 have a low factor loading

98



MA-M27 Probability and Statistics for Data Science Lecture Notes

with 𝐹1 and a high factor loading with 𝐹2. This suggests that 𝐹1 is the factor,
or latent variable, literacy skills and 𝐹2 is the factor, or latent variable,
numeracy skills.

This gives a general insight into the method. We now consider the finer
details of the procedure, in particular, we will investigate the methods of
calculating factor loadings and determining factors. We first consider/recall
the definition of the covariance of random variables,

cov(𝑋, 𝑌 ) = 𝔼((𝑋 − 𝔼(𝑋))(𝑌 − 𝔼(𝑌 )))
= 𝔼(𝑋𝑌 − 𝔼(𝑋)𝑌 − 𝑋𝔼(𝑌 ) + 𝔼(𝑋)𝔼(𝑌 ))
= 𝔼(𝑋𝑌 ) − 𝔼(𝑋)𝔼(𝑌 ) − 𝔼(𝑋)𝔼(𝑌 ) + 𝔼(𝑋)𝔼(𝑌 )
= 𝔼(𝑋𝑌 ) − 𝔼(𝑋)𝔼(𝑌 ).

For matrices, this generalises to,

Σ = 𝔼 [(𝑋 − 𝔼(𝑋))(𝑋 − 𝔼(𝑋))𝑇] . (10.3)

Since the 𝑋𝑖’s are centralised in our calculations, 𝔼(𝑋) = 0 in the linear model
(10.2), and we obtain Σ, the covariance matrix of the variables 𝑋1, … , 𝑋𝑛, as
follows:

Σ = 𝔼(𝑋𝑋𝑇),

by (10.3) with 𝔼(𝑋) = 0, and by (10.2),

𝔼(𝑋𝑋𝑇) = 𝔼((𝐴𝐹 + 𝜖)(𝐴𝐹 + 𝜖)𝑇)
= 𝔼((𝐴𝐹 + 𝜖)(𝐹 𝑇𝐴𝑇 + 𝜖𝑇))
= 𝔼(𝐴𝐹𝐹 𝑇𝐴𝑇) + 𝐴𝔼(𝐹𝜖𝑇) + 𝔼(𝜖𝐹 𝑇)𝐴𝑇 + 𝔼(𝜖𝜖𝑇)
= 𝐴𝐼𝐴𝑇 + 0 + 0 + Ψ
= 𝐴𝐴𝑇 + Ψ,

where Ψ is a diagonal matrix of the specific variances 𝜓𝑖. We assume that
the factors are uncorrelated with unit variance, hence 𝔼(𝐹𝐹 𝑇) = 𝐼 above.
Also, the cross-multiplication terms are 0 since we assume that the factors
are not correlated with the errors 𝜖. Note that the factors themselves have
now dropped out of the calculations. Next we set,

𝑅 = 𝐴𝐴𝑇 = Σ − Ψ,

where 𝑅 is known as the adjusted covariance matrix, i.e. the variance of the
observations are “adjusted” by subtracting the specific variances. Like Σ, 𝑅
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is a symmetric matrix and hence using results from linear algebra we may
state

𝑅 = 𝑉 𝐿𝑉 𝑇,

where 𝑉 is a matrix of the eigenvectors of 𝑅 and 𝐿 a matrix of the eigenvalues
of 𝑅. Furthermore,

𝑅 = 𝑉 𝐿𝑉 𝑇 = 𝑉
√

𝐿
√

𝐿𝑉 𝑇

= (𝑉
√

𝐿)(
√

𝐿𝑉 𝑇)
= (𝑉

√
𝐿)(𝑉

√
𝐿)𝑇

= 𝐴𝐴𝑇,

where we used that 𝐿 is diagonal, hence
√

𝐿𝑇 =
√

𝐿. This implies that

𝐴 = 𝑉
√

𝐿. (10.4)

Therefore, once the eigenvectors and eigenvalues of 𝑅 are known, the factor
loading matrix 𝐴 is easily obtained by (10.4).

Remark 10.2

Note that equation (10.4) is true if all factors, or eigenvalues, are used in
the model. However, we only want to consider significant factors (i.e. we
may choose to ignore certain factors) and therefore we require methods
of extracting and evaluating such factors.

In Python, there are various methods of “extracting” the factors, the main
one being Principle Axis Factoring which finds the least number of factors
that account for the common variance of a set of variables.

Evaluating Factors
There are various means of evaluating and extracting the factors, including:

• Eigenvalues: one method of choosing factors is to consider factors
with eigenvalues > 1. This is known as the Kaiser criterion.

• Scree plot: this is a plot of the eigenvalues which can indicate where
there is a clear cut-off (an inflexion point) between large and small
eigenvalues.

• Communality: this is the sum of the squared loadings for a variable
across factors and it provides a percentage of variance accounted for by

100



MA-M27 Probability and Statistics for Data Science Lecture Notes

the factors. The accepted proportions for communality are dependent
on the sample size. The general rule is as follows:

– If all communalities > 0.6, then this is considered very strong and
we may even take relatively small samples in this scenario (< 100);

– Communalities > 0.5 are adequate for sample of size 100 − 200,
or more;

– Smaller communalities may be accepted for larger sample sizes.

• Factor loadings: we aim for factor loadings to be ≥ 0.4 for the main
factor. We then study the observations with high loadings of a particular
factor in order to try to identify the factor. Factor loadings appear in
the Pattern Matrix in Python.

Rotations
In cases where the factor loading matrix 𝐴 cannot be interpreted clearly, it
may be rotated to try to improve interpretations. The aim is to maximise
high correlations between factors and variables and to minimise low ones.
This can be performed since the factor loading matrix is not uniquely defined.
There are two different types of rotation, orthogonal and oblique.

Orthogonal Rotations
Orthogonal rotations are used when we assume that the factors are uncorre-
lated. There are various orthogonal rotations possible, with the most common
being Varimax, Quartimax and Equamax. The process involves a simple
matrix multiplication as follows:

𝐴rotated = 𝐴Λ, (10.5)

where Λ is the rotation matrix,

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) . (10.6)

For the case where we have 2 factors, a typical orthogonal rotation is illustrated
as follows:
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Varimax Rotation
Varimax is often the most common used rotation which involves a variance
maximising procedure. The goal of varimax rotation is to maximise the
variance of factor loadings by making high loadings higher and low ones lower
for each factor.

Quartimax Rotation
Quartimax does for variables what varimax does for factors. It simplifies
variables by increasing the dispersion of the loadings within variables, across
factors.

Equamax Rotation
Equamax rotation is a hybrid between varimax and quartimax that tries
simultaneously to simplify the factors and the variables.

102



MA-M27 Probability and Statistics for Data Science Lecture Notes

In conclusion, varimax rotation simplifies the factors, quartimax the variables
and equamax both.

Oblique Rotation
Oblique rotations allow the factors to be correlated. In practice, this is a
highly likely possibility. For example, if two of our factors were Achievement
and Alcoholism, we would expect there to be a correlation between these
factors. Oblique rotations also include orthogonal rotations, i.e. when the
factors are assumed to be uncorrelated. For the case where we have 2 factors,
a typical oblique rotation is illustrated as follows:

The two main types of oblique rotations are Direct Oblimin and Promax.

Direct Oblimin is the default oblique rotation we will use in Python.

The Promax method is quicker and is therefore better to use if dealing with
large data sets.

It is good practice to first perform an oblique rotation and to change to
an orthogonal rotation if correlation between the factors does not seem to
exist. In Python, this can be checked by examining the Factor Correlation
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Matrix Φ, which is given by,

Φ =
⎛⎜⎜⎜⎜
⎝

𝜙11 𝜙12 ⋯ 𝜙1𝑚
𝜙21 𝜙22 ⋯ 𝜙2𝑚

⋮ ⋮
𝜙𝑚1 𝜙𝑚2 ⋯ 𝜙𝑚𝑚

⎞⎟⎟⎟⎟
⎠

,

where 𝑚 is the number of factors.

The general rule is to use an oblique rotation if |𝜙𝑖𝑗| > 0.32 for all 𝑖, 𝑗 =
1, … , 𝑚, 𝑖 ≠ 𝑗. Clearly, we do not include the diagonal terms as these will
always be 1 (i.e. the correlation of a factor with itself).

If an oblique rotation is found to be suitable, the elements of the Pattern
Matrix are reported.

The following example is for illustrative purposes only.

Example 10.3. In an experiment, skiers were asked about their opinions
on the cost of a skiing ticket (COST), the speed of the ski lifts (LIFT), the
depth of the snow (DEPTH) and the moisture of snow (POWDER). Here is
the raw data,

Skier COST LIFT DEPTH POWDER

𝑆1 32 64 65 67
𝑆2 61 37 62 65
𝑆3 59 40 45 43
𝑆4 36 62 34 35
𝑆5 62 46 43 40

When no limit is placed on the number of factors, we have 4 factors with
eigenvalues 2.02, 1.94, 0.04 and 0.00. Using the Kaiser criterion and a scree
plot, we keep the eigenvalues 2.02 and 1.94, and then we run the factor
analysis again with these 2 factors only. Below is the scree plot that shows a
clear distinction between the eigenvalues:
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Once we run the analysis keeping only the 2 strong factors, we obtain the
communalities under the extraction column in the table below:

Clearly, as these communalities are close to 1, a large proportion of the
variation in each variable can be accounted for by the factors. The pattern
matrix is given by,

We see that DEPTH and POWDER have a high factor loading with Factor 1
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and that COST and LIFT have a high factor loading with Factor 2. However,
since the remaining factor loadings are not negligible, we will perform rotations
with the aim of obtaining a clearer interpretation. Firstly, let us consider the
Direct Oblimin oblique rotation. The Factor Correlation Matrix Φ is given
below,

We can see that |𝜙𝑖𝑗| ≤ 0.32 for 𝑖 ≠ 𝑗. Therefore, we conclude that an oblique
rotation is not warranted and instead we use the Varimax orthogonal rotation,

This is a rotation in the sense of (10.6) by 0.33 radians (19 degrees). Using
(10.5), we can confirm the rotated factors are given by:

𝐴rotated = 𝐴Λ =
⎛⎜⎜⎜⎜
⎝

−.40 .90
.25 −.95
.93 .35
.96 .29

⎞⎟⎟⎟⎟
⎠

(cos 0.33 − sin 0.33
sin 0.33 cos 0.33 )

=
⎛⎜⎜⎜⎜
⎝

−.40 .90
.25 −.95
.93 .35
.96 .29

⎞⎟⎟⎟⎟
⎠

(.95 −.33
.33 .95 )

=
⎛⎜⎜⎜⎜
⎝

−.08 .98
−.08 −.98
.99 .02
1 .05

⎞⎟⎟⎟⎟
⎠

Here is an illustration of the rotation:
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In this example, it is clear that the variables DEPTH and POWDER are
associated with a factor concerning snow conditions. The variables COST
and LIFT are associated with a factor concerning resort conditions.

10.2 Principal Component Analysis (PCA)
Principal component analysis is similar to factor analysis in that both are
used for data reduction, and they often provide similar results. However, in
PCA we write the components (factors in FA) as a linear combination of the
variables, where as in FA, we write the variables in terms of the factors, see
(10.1). This can be expressed as follows:

𝐶1 = 𝑒11𝑋1 + 𝑒12𝑋2 + ⋯ + 𝑒1𝑛𝑋𝑛

𝐶2 = 𝑒21𝑋1 + 𝑒22𝑋2 + ⋯ + 𝑒2𝑛𝑋𝑛

⋮ ⋮
𝐶𝑚 = 𝑒𝑚1𝑋1 + 𝑒𝑚2𝑋2 + ⋯ + 𝑒𝑚𝑛𝑋𝑛,

where 𝐶1, … , 𝐶𝑚 represent the components, 𝑋1, … , 𝑋𝑛 are the variables and
𝑒𝑖𝑗 are the regression coefficients, or weights of the variables. Similar to (10.2),
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we can rewrite this system in matrix form as below,

𝐶 = 𝐸𝑋.

In the case of factor analysis, the factor loadings were given by the eigenvectors
and eigenvalues, however, in principal component analysis, the weightings of
the variables are given by the eigenvectors and eigenvalues of the covariance
matrix. The largest eigenvalue and associated eigenvector is applied to the
first principal component, with the next largest applied to the second principal
component etc.

Choosing Principal Components
The principal components are chosen in the following way:

• The first principal component,

𝐶1 = 𝑒11𝑋1 + 𝑒12𝑋2 + ⋯ + 𝑒1𝑛𝑋𝑛,

is chosen such that it accounts for as much variation in the data as
possible, subject to the condition that 𝑒2

11 + 𝑒2
12 + … 𝑒2

1𝑛 = 1.

• The second,
𝐶2 = 𝑒21𝑋1 + 𝑒22𝑋2 + ⋯ + 𝑒2𝑛𝑋𝑛,

is chosen such that the variance is as high as possible, similarly condi-
tional on 𝑒2

21 + 𝑒2
22 + … 𝑒2

2𝑛 = 1.

• The second principal component must be chosen such that it is uncor-
related with the first.

• The 𝑖th principal component,

𝐶𝑖 = 𝑒𝑖1𝑋1 + 𝑒𝑖2𝑋2 + ⋯ + 𝑒𝑖𝑛𝑋𝑛,

again is chosen such that the variance is as high as possible, conditional
on 𝑒2

𝑖1+𝑒2
𝑖2+… 𝑒2

𝑖𝑛 = 1 and it being uncorrelated with all other principal
components.

• All principal components are uncorrelated with each other.

As previously stated, the weightings 𝑒𝑖𝑗 are obtained from eigenvectors corre-
sponding to the 𝑖th largest eigenvalue.
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Remark 10.4

The process of maximising the variance uses the theory of Constrained
Optimisation, which, in this case, essentially means maximising the
variance for the 𝑖th principal component conditional on 𝑒2

𝑖1+𝑒2
𝑖2+… 𝑒2

𝑖𝑛 =
1.

Number of Components and Rotations
We will use the same guidelines for determining the number of components
as we did for factors in factor analysis, i.e. by evaluating eigenvalues, scree
plots, communalities and factor loadings. Similarly, we will use rotations in
the same way for principal component analysis as we did in factor analysis,
i.e. if components are not clear from the unrotated results, we next perform
an oblique rotation. If there is not enough correlation between the principal
components to warrant the use of an oblique rotation, we then perform an
orthogonal rotation.

Deciding between PCA and FA
PCA is used to simply reduce the observed variables into a smaller set of
important independent composite variables (components). FA tends to be
used when there are suspected latent factors (not directly measurable factors)
causing the observed variables.
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